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Women with mammographic percent density �50% have a �three-fold increased risk of develop-
ing breast cancer, potentially making them screening candidates for breast MRI scanning. The
purpose of this work is to introduce a new method to quantify mammographic percent density
�MPD�, and to compare the results with the current standard of care for breast density assessment.
Craniocaudal �CC� and mediolateral oblique �MLO� mammograms for 104 patients were digitized
and analyzed using an interactive computer-assisted segmentation routine implemented for two
purposes: �1� to segment the breast area from background and radiographic markers, and �2� to
segment dense from fatty portions of the breast. Our technique was evaluated by comparing the
results to qualitative estimates determined by a certified breast radiologist using the BI-RADS
Categorical Assessment �1 �fatty� to 4 �dense� scale�. Statistically significant correlations �two-
tailed, p�0.01� were observed between calculated MPD and BI-RADS for both CC �Spearman
�=0.67� and MLO views �Spearman �=0.71�. For the CC view, statistically significant differences
were revealed between the mean MPD for each BI-RADS category except between fatty �BI-RADS
1� and scattered �BI-RADS 2�. Finally, for the MLO views, statistically significant differences in the
mean MPD between all BI-RADS categories were observed. Comparing the CC and MLO views
revealed a strong positive correlation �Pearson r=0.8� in calculated MPD. In addition, an evaluation
of the reproducibility of our segmentation demonstrated the average standard deviation of MPD for
a subsample of eight patients, measured five times, was 1.9% �range: 0.03%–9.9%�. Eliminating
one misassignment reduced the average standard deviation to 0.75% �range: 0.03%–3.16%�. Fur-
ther analysis of �10% of the patient sample revealed strong agreement �ICC�0.80–0.85� in the
reliability of MPD estimates for both mammographic views. Overall, these results demonstrate the
feasibility of utilizing our approach for quantitative breast density segmentation, which may be
useful for detecting small changes in MPD introduced through chemoprevention, diet, or other
interventions. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2789407�
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I. INTRODUCTION

Mammographically dense breast tissue is strongly associated
with an increase in breast cancer risk, with a relative risk of
up to four to five times more for women with dense
breasts.1–4 Furthermore, increased breast density has been
shown to be more prognostic of overall breast cancer risk
than nearly all other risk factors.5–7 The American Cancer
Society therefore recommends that women with a calculated
lifetime risk of breast cancer �20% receive screening MRI.8

A recent detailed analysis of breast density levels not only
confirmed previous breast cancer risk estimates, but also
clearly placed a �three-fold increased risk of breast cancer
for patients with overall density �50%.4 Should breast den-
sity become an important component of risk assessment
models as recent studies have suggested,9–11 an objective
breast density estimation may be used to identify women
who are more likely to be eligible for MRI screening. How-
ever, current breast density estimation is not readily quanti-
fied in such a manner for broad community application or
acceptance.

Breasts are comprised of both fat—a radiolucent

material—and fibroglandular tissue, and as a result of this
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distribution, the mammographic percent density �MPD� can
be calculated to represent the ratio of fibroglandular to total
breast areas. Typically, MPD is assessed by radiologists who
score the breast composition into one of four different BI-
RADS categories: �1� almost entirely fat ��25% glandular�,
�2� scattered fibroglandular �25%–50% glandular�, �3� het-
erogeneously dense �51%–75% glandular�, and �4� extremely
dense ��75% glandular�. The American College of Radiol-
ogy has established these BI-RADS categories as the current
standard of care in breast density reporting.12 While this ap-
proach is quick and cost-effective to implement, the use of
BI-RADS categories is not ideal because of considerable
intra- and inter-reader variability.13,14

To address these limitations, several investigators have
developed computer-aided segmentation algorithms to calcu-
late mammographic density from digitized
mammograms.15–17 However, these techniques require the
user to interactively select global threshold values for the
background and/or dense tissue area, which introduces the
potential for additional user variability. In addition, previous
research has tended to evaluate craniocaudal �CC� mammo-

grams despite the fact that mediolateral �MLO� views evalu-
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ate a greater extent of breast tissue. This may be because CC
views do not typically require pectoral muscle segmentation.
The method we are presenting, however, automates the seg-
mentation of the breast from background, and semiautomates
the segmentation of pectoral muscle and fibroglandular tissue
from the rest of the breast. As an independent evaluation of
our technique, we segmented both CC and MLO digitized
mammograms for each patient, and compared them to BI-
RADS categorical assessments. Finally, we compared the
segmentation results between MLO and CC views and evalu-
ated the reproducibility of our technique. The results of this
study introduce a novel means of breast density evaluation,
which may be used to identify women who are at high risk
for breast cancer and as a result are eligible for future screen-
ing MRI.

II. METHODS AND MATERIALS

II.A. Patient sample and BI-RADS classification

Patients in this study were recruited from the Walt Com-
prehensive Breast Center located at Karmanos Cancer Insti-
tute at Wayne State University. All imaging procedures were
performed under an institutional review board approved pro-
tocol and in compliance with the Health Insurance Portabil-
ity and Accountability Act. The patient population included
104 case sets and provided a variety of breast sizes and den-
sities, with a median patient age of 48.5 years �range, 21–
85�.

As an independent evaluation of our methodology, we
compared our results with BI-RADS categories defined by a
radiologist �P.L.� board-certified in mammographic interpre-
tation with over 10 years of breast imaging experience. The
radiologist also used the descriptive pictorials displayed in
the BI-RADS Breast Imaging Atlas for consistent evaluation
standards.12 The resulting sample distribution is shown in
Table I. The majority of the sample was distributed in the
two intermediate categories, which is consistent with the
findings from previous studies.18,19

II.B. Image digitization and processing

Mammograms in the CC and MLO projections were digi-
tized using a Vidar VXR-16 Dosimetry Pro digitizer with a
TWAIN interface �version 5.2.1�. The digitization parameters
utilized were as follows: 71 dpi resolution, 8 bit depth, and
the application of a logarithmic translation table. High reso-
lution images are not required for MPD calculation because

20

TABLE I. The BI-RADS compositional category distribution for our patient
population.

BI-RADS compositional category Patient sample �% of population�

�1� Fatty ��25% � 11 �11%�
�2� Scattered �26%–50%� 66 �63%�
�3� Heterogeneous �51%–75%� 19 �18%�
�4� Dense ��75% � 8 �8%�
this ratio is known to be a coarse measure.
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An interactive, computer-assisted segmentation routine
was implemented for mammogram segmentation. Figure 1
demonstrates the algorithm followed for MPD calculation
for the MLO view. All image analysis procedures
were performed using IMAGEJ �available at:
http://rsb.info.nih.gov/ij/download.html�.21 First, to segment
the breast area from background and radiographic markers, a
mixture-modeling algorithm was employed �available at:
http://rsb.info.nih.gov/ij/plugins/mixture-modeling.html�.22

This algorithm separated the gray-level histogram of an im-
age into two different classes �i.e., breast and nonbreast fea-
tures� using Gaussian modeling. The first Gaussian curve
modeled the prominent background peak, while the second
peak was fit to the other features. The threshold intersection
is automatically calculated based on a multistep process.
First, the gray-level histogram is scanned, two mean gray-
level values are calculated, and the error between the two
mean values is minimized. The threshold intersection is then
further optimized by iteratively fitting two weighted Gauss-
ians to the data. The minimized error between these two fits
provides the intersection threshold for the mammogram,
which is then used to create the binary mixture-modeled im-
age �shown in Fig. 2�B��.

FIG. 1. Flowchart that demonstrates the algorithm used in segmentation of
mammograms. For the majority of the craniocaudal mammograms, the chest
wall did not need to be removed and steps 3 and 4 were omitted for these
cases.

FIG. 2. �A� The mixture modeling algorithm fits two Gaussians to the gray-
level histogram of the mammogram. The intersection of the Gaussians dis-
tinguishes the breast signal from the background. �B� Craniocaudal mam-
mogram �BI-RADS Category 1, Fatty� with the breast edge defined by the

mixture modeling technique.
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The breast outline is automatically selected using the trac-
ing tool which traces the breast edge on the binary image.
This region of interest was saved to IMAGEJ’s ROI Manager,
which records the current ROI selection, image number, and
x and y coordinates of the selection. This ROI was then
restored onto the original mammogram using the ROI Man-
ager and the exact recorded coordinates. The areas outside of
the breast outline �i.e., background, radiographic markers,
and labels� were deleted using the “Clear Outside” function,
which erases the area outside of the selection and sets the
erased area to the background gray-level value. The tracing
tool, ROI Manager, and Clear Outside function are all
built-in components of IMAGEJ and do not need to be down-
loaded.

Once the background and radiographic markers were
eliminated, the third step was to segment the chest wall from
the breast by employing a k-means clustering routine
�Fig. 3�C��. The k-means clustering routine is an IMAGEJ

plug-in �available at: http://sourceforge.net/project/
showfiles.php?group_id�44711&package_id�37246�. k-
means clustering employs pixel-based segmentation where
each cluster �n� is defined by its centroid in n-dimensional
space. Cluster centroids are established using heuristics, and
pixels are then segregated according to their proximity to the
cluster’s centroid values.23 Further information on data clus-
tering can be found in Ref. 24.

Next, the user was required to define the number of clus-
ters used in the k-means clustering segmentation of the chest
wall. As Fig. 3�A� shows, the highly attenuating regions as-
sociated with the chest wall and pectoral muscle are clearly
visible at the edge of the mammogram. Upon quick visual
inspection, the operator should be able to easily decipher if
the high intensity regions near the chest wall region are a
natural part of the breast area, or if they should be segmented
out to avoid being included in the calculation of breast den-
sity. The high intensity chest wall regions on a mammogram
are clearly demarcated from the rest of the breast using the
k-means clustering technique, as demonstrated by Fig. 3�C�.
Once the background has been deleted with the mixture-
modeling method, two or three clusters are typically used to
segment the pectoral muscle from the rest of the breast. Once
the chest wall was segmented, the region of interest was

FIG. 3. �A� Left medio-lateral mammogram. �B� The breast edge defined by
the mixture modeling technique. �C� k-means clustering of the chest wall
from the breast. �D� Total breast area with chest wall segmented. �E� Dense
area �light gray� segmented from the remaining breast area using k-means
clustering. The mammographic percent density was calculated by dividing
the dense area �light gray in �E�� by the entire breast area shown in �D�.
superimposed on the breast area using the ROI Manager and
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subsequently deleted from the total breast area using the
Clear Outside function. For the majority of CC views, seg-
mentation of the pectoral muscle is not required because it
does not appear in the image, thus eliminating steps 3 and 4
shown in Fig. 1.

Another iteration of the k-means clustering routine was
applied to the remaining breast area to segment the dense
parenchyma as shown in Fig. 3�E�. The operator can run the
segmentation routine with different numbers of clusters and
compare the results to the original parenchymal pattern
shown in the mammogram. Furthermore, the user can alter
the brightness and contrast features of the original mammo-
gram to obtain an improved visualization of the breast’s pa-
renchymal pattern. By comparing the segmented image to
the mammogram, the user will select the most suitable num-
ber of clusters on a mammogram by mammogram basis. As
an example, the user can evaluate the performance of the
clustering technique by selecting the clustered regions with
the tracing tool and saving the ROI to the ROI Manager. This
ROI can then be restored onto the original mammogram, and
the overlay can provide information on the effectiveness of
the clustering algorithm. For example, if the dense parenchy-
mal area in the mammogram were smaller than the ROI, then
an increase in the number of clusters would be required.
Finally, the MPD was calculated as the segmented dense
breast pixel area divided by the total breast pixel area �not
including the chest wall� and subsequently converted into a
percentage. One reader applied this technique to both CC
and MLO views of the same breast for all 104 patients. To
validate our technique, associations were investigated be-
tween BI-RADS category and calculated MPD for each
mammographic view. A correlation was also made between
the MLO and CC views. All statistical procedures were con-
ducted using SPSS for Windows �version 15.0�.

II.C. Reproducibility assessment

Next, to evaluate the reproducibility of mammographic
segmentation, a randomly selected sample of eight patients
was analyzed at five different time points separated by more
than 2 days between each evaluation session. To prevent user
bias, the observer was blinded to the previous time point’s
calculation. Because the patients were initially selected at
random, were not arranged in a particular order, and the
number of clusters varied for each patient, the potential of
the operator recalling the number of clusters used for each
patient was minimized. The means and standard deviations
of the MPD were calculated for each patient. Further, the
mean calculation time for the mixture modeling algorithm
was calculated for all 40 measurements. Finally, a random
sample of �10% of the images was reanalyzed, and the in-
traclass correlation coefficient was determined.

III. RESULTS

III.A. Qualitative breast density measurements

Figure 4 shows three different mammograms segmented

with our technique. Figure 4�a� shows a fatty breast �MPD
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�15%� calculated using four clusters, Fig. 4�b� is a hetero-
geneous breast �MPD �50%� obtained with three clusters,
and Fig. 4�c� is a dense breast �MPD �70%�, which was also
segmented using three clusters. The pectoral muscle was seg-
mented in all 104 MLO views. For the CC views, however,
only 35% of the sample required the pectoral muscle to be
removed.

Typically, the number of clusters used in segmentation is
the same for similar BI-RADS Category breasts. For in-
stance, seven out of eight dense breasts and seventeen out of
nineteen heterogeneous breasts were segmented using three
clusters. In general, the higher the number of clusters used,
the lower the MPD for that particular breast. This generali-
zation is further supported by the fact that the majority �ten
out of eleven� of the BI-RADS 1 patients were segmented
using greater than five clusters. The one patient who deviated
from this trend had a calculated MPD of �34% for both CC
and MLO views, revealing that this patient should have ac-
tually been characterized as a BI-RADS Category 2 �scat-
tered� breast.

Our technique was evaluated by comparing our results to
the current standard of care: qualitative estimates using the
BI-RADS Categorical Assessments. The resulting distribu-

FIG. 4. Three different craniocaudal mammograms segmented with our in-
house segmentation technique where the dense fibroglandular tissue appears
in white and nondense portion of the breast appears in black. �A� A BI-
RADS Category 1 breast with MPD �15% using four clusters. �B� A BI-
RADS Category 3 breast with MPD �50% using three clusters. �C� A
BI-RADS Category 4 breast with MPD �70% using three clusters.

FIG. 5. The mammographic density calculated by our in-house segmentatio

views. Significant positive associations were found between the calculated mamm
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tions are illustrated for both CC �Fig. 5 �left�� and MLO �Fig.
5 �right�� views. As expected, statistically significant corre-
lations �two-tailed, p�0.01� were observed between calcu-
lated MPD and BI-RADS for both CC �Spearman �=0.67�
and MLO views �Spearman �=0.71�. A one-way analysis of
variance revealed that a significant difference existed be-
tween the mean values of calculated MPD according to BI-
RADS �p�0.01� for both views. For the CC views, further
post hoc analyses using Scheffé criterion for significance
��=0.05� revealed that statistically significant differences
existed between the mean MPD for each BI-RADS category
except between fatty �BI-RADS 1� and scattered �BI-RADS
2�. Finally, for the MLO views, statistically significant dif-
ferences in the mean MPD between all BI-RADS Categories
were observed.

III.B. Correlation of two mammographic views

Figure 6 shows the comparison of the calculated mammo-
graphic density for the MLO and CC views of the same
breast for our sample of 104 patients. A strong positive cor-
relation between the two views was demonstrated �Pearson
r=0.8�. Linear regression yielded an equation of y=0.76x
+13.14 to best describe the relationship between the two
views, with a standard error of 0.06 and 2.09 in the slope and
y intercept, respectively. There was a significant difference
between MPD for the two mammographic views, t�103�
=5.64, p�0.001, with the MLO views �M =39.2, SD=13.8�
having higher MPD than the CC views �M =34.2, SD=14.5�.

III.C. Reproducibility assessment

To characterize the reproducibility of our segmentation
algorithm, one user calculated the MPD at five time points
for eight different patients. Figure 7 shows the results for the
mean MPD for each patient with one standard deviation
shown by the error bars. The average standard deviation of
MPD for all eight patients was 1.9% �range: 0.03%–9.9%�.

thod correlated with BI-RADS category for the CC �left� and MLO �right�
n me

ographic percent density and BI-RADS category for both views.
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The largest difference was observed for patient 7, where the
number of clusters was misassigned by the observer for one
out of five time points. This misassignment resulted in a
MPD standard deviation of 9.9% for this patient case. Elimi-
nating 1 misassignment out of the 40 calculations reduced
the standard deviation to 0.35% for this patient, and the total
overall average standard deviation for all eight patients was
reduced to 0.75% �range: 0.03%–3.16%�. The mean calcula-
tion time for the mixture modeling routine over all 40 seg-
mented mammograms was 0.16±0.02 s. A calculation time
could not be computed for the k-means clustering technique;
however, overall segmentation of dense tissue using the
methodology outlined here is expected to take less than 30 s.
Further, a random sample of �10% of the images was re-
analyzed, and the intraclass correlation coefficient was deter-
mined to be 0.80 and 0.85 for the CC and MLO views,
respectively.

IV. DISCUSSION

In this feasibility study, we developed and evaluated a
method for the quantitative analysis of mammograms that

FIG. 6. A strong positive correlation was demonstrated �Pearson correlation
�0.8� between CC and MLO views for our segmentation method �n=104�.

FIG. 7. The mammographic percent density calculated with our segmenta-
tion method for eight randomly selected patients at five different time points
by the same observer. The error bars indicate one standard deviation of the

mean.
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automates the segmentation of the breast image from the
background/radiographic markers and semiautomates the
segmentation of the fibroglandular tissue from the rest of the
breast. Our technique offers some unique advantages to as-
sessing breast density. In particular, the user is required to
define the number of clusters used in fibroglandular segmen-
tation and evaluate the goodness of segmentation. While it
was less advantageous to introduce user input, most methods
of mammographic density calculation utilize interactive
thresholding that requires the user to define two different
gray-level values: one associated with dense tissue and one
with the image background.15,17 Using these other ap-
proaches, the user must identify gray-level values for each,
and evaluate the performance of each selection. Conversely,
the method we have investigated involves the selection and
evaluation of one user-defined parameter: the number of
clusters. Therefore, this approach has the potential to provide
more reproducible and less user-dependent MPD calculation.
Both our methodology and other breast density evaluation
methods require the user to determine if segmentation of the
pectoral muscle is necessary, although our method imple-
ments the clustering technique to semiautomatically segment
pectoral muscle present in all MLO views and as needed in
CC views. This is a distinct advantage over other research-
ers’ segmentation methods that require manual segmentation
of the pectoral muscle,15 or use multiple straight edges to
define an irregular boundary.25 A clear advantage of quanti-
tatively assessing breast density is the potential to develop a
continuous evaluation scale that would be superior to the
coarse BI-RADS categories.

Another group developed a computerized image analysis
tool that segments the breast from the background using
boundary tracking, reduces the gray-level range to enhance
density differences, and classifies the breast based on the
gray-level histogram for each image �i.e., MDEST�.26 While it
is advantageous that this approach is fully automated, it does
not always work because the histogram analysis method ex-
hibited “gross misclassification” of 6% of the patient
sample.27 In addition, this technique was particularly prob-
lematic for distinguishing between women with fatty and
dense breasts because of their similar gray-level histogram
characteristics.26 This was very disconcerting because using
this methodology would characterize women with the high-
est breast cancer risk �BI-RADS Category 4� into the same
category as the women with the least amount of risk �BI-
RADS Category 1�. Our method, on the other hand, auto-
mates breast detection from the background while semiauto-
mating fibroglandular tissue segmentation. The
implementation of a semiautomatic approach for dense tissue
segmentation combines the benefits of automation with the
discriminating power afforded by incorporating user input in
an open-source and widely accessible software package. Pre-
sumably, MDEST is not commercially available at this time,
and therefore extensive implementation may be limited.
However, our segmentation technique utilizes IMAGEJ, public
domain software developed with support from the National
Institute of Health, and therefore has the potential to be

readily put into practice. Not surprisingly, a major medical
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data archiving corporation has embedded the IMAGEJ viewer
into its DICOM media viewer, thus supporting the potential
for widespread usage of the segmentation algorithms pro-
posed here.28

To compare our approach to the current standard of care,
we arranged our calculated MPD results by BI-RADS com-
positional category, shown in Fig. 5. A statistically signifi-
cant increase in calculated MPD and increasing BI-RADS
breast density category was demonstrated for both mammo-
graphic views. Furthermore, for the MLO views, a statisti-
cally significant difference in the mean MPD between each
BI-RADS category was demonstrated, whereas the CC views
could not demonstrate significant differences between Cat-
egories 1 �fatty� and 2 �scattered�. The binning of each BI-
RADS category is coarse �i.e., 25% per category� and can
also be related to intraobserver reliability. In addition, the
overlap between the crucial categories of 2 �scattered� and 3
�heterogeneous� makes an objective determination of the
50% density level impractical for the designation of patients
that may be considered for MRI screening. Despite the more
objective nature of our technique, a spread in calculated
MPD is expected for each BI-RADS category and was
clearly demonstrated. Our investigation also involved only
one reader, therefore eliminating the potential for interob-
server variability. Overall, the strong positive correlation
�Spearman ��0.7 for both views� between MPD and BI-
RADS category further validates our more operator-
independent approach.

Several researchers have investigated the use of catego-
rizing breast density with other classification schemes in-
cluding the six-category classification,15 Wolfe’s
patterns,19,29 or Tabar’s patterns.17,30 However, the American
College of Radiology has established the BI-RADS compo-
sitional categories as the standard of care in clinical breast
density reporting, which renders it the most clinically appli-
cable approach. Further efforts were not made to evaluate the
variability in the BI-RADS descriptor, particularly because
this work has already been investigated by other
researchers.13,14

To further investigate our image segmentation methods,
we correlated the results for the CC and MLO projections of
the same breast. For the sample of 104 patients, a strong
positive correlation was demonstrated �Pearson correlation
�0.8�. Linear regression revealed �13% offset in MPD for
the MLO view compared to the CC view. However, MLO
views are known to evaluate a greater extent of breast tissue,
including more of the upper outer quadrant region where
most cancers arise.31,32 Our results were consistent with
MLOs evaluating more tissue area, due to the mean MPD for
all 104 MLO views being about 5% higher �39%� than the
mean MPD for all CC views �34%�. Analyzing a single MLO
view with our technique may thus be used for larger screen-
ing studies where effective time utilization may be impor-
tant. Further, a perfect correlation between the two views
cannot be expected for many reasons, including the variabil-
ity in breast compression between views and the MLO pro-
jection inevitably incorporating a larger projected mammo-

graphic area. Limited data are available for similar
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comparisons. One study by Byng et al. compared thresh-
olded segmentation between CC and MLO views and re-
vealed a correlation coefficient of 0.96 for two different
observers.33 However, this sample included only 30 patient
mammograms evenly distributed among different breast den-
sities. Our sample, on the other hand, had the majority of the
data points concentrated at the same intermediate breast den-
sities, with a sample over three times in size. As a result, the
spread in the distribution adversely affected the correlation
coefficient between views.

The reproducibility of our technique was assessed by one
observer computing five repeated measures for eight patient
cases. Including only one observer eliminated the potential
for interobserver variability, and this approach was consistent
with that of a recent study.4 The user selected a different
number of clusters to evaluate a patient in only 1 out of 40
different calculations of MPD, and eliminating this misas-
signment resulted in less than 1% variability in our MPD
calculations. This was slightly improved over results in a
previous study where two radiologists misassigned the fibro-
glandular tissue density threshold in 1 out of 30 cases.33

Further analysis of �10% of the patient sample revealed
strong agreement �ICC�0.80–0.85� in the reliability of MPD
estimates for both mammographic views. These results were
lower than the 0.94 agreement demonstrated by Boyd et al.4

for CC views, although this was expected due to our sample
being one-tenth the size. No comparisons were available to
evaluate the reproducibility of our MLO segmentation tech-
nique, thus indicating the gap in knowledge of mammo-
graphic density estimation for this view. Overall, the repro-
ducibility of quantitative measures is greatly improved over
the intraobserver variability of BI-RADS category classifica-
tion previously demonstrated.13

Although our results were encouraging, some limitations
exist in our investigation. These include the coarse scale used
in the BI-RADS category definition and having only one
radiologist assess this parameter. Nevertheless, the purpose
of this study was not to re-evaluate the BI-RADS descriptor,
but rather to compare our mammographic segmentation tech-
nique to the current standard of care. Another limitation is
the involvement of only one reader for quantitative image
segmentation. This eliminated the potential for estimating
interobserver variability for our pilot study, although this will
be evaluated more extensively in future studies. Some major
drawbacks of using film-screen mammography to assess
breast density include the fact that it does not take into ac-
count breast thickness and relies on a 2D projection of a
volume. While this may be true, mammography is the gold
standard in breast cancer screening and detection, thereby
making it most relevant for breast density evaluation. Our
preliminary results have shown that our method for mammo-
graphic density estimation is consistent with current MPD
assessments, although areas of future research include incor-
porating the variability of compressed breast volume, ad-
dressing differences in imaging parameters among patients
and mammographic views, and estimating volumetric breast
density. The clinical impact of our approach would be better

determined in a larger clinical trial with a larger number of
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readers and raters. With further development, a segmentation
routine such as the one presented here could be readily in-
corporated into computer-aided diagnosis systems such as
R2 Image Checker to calculate MPD for every patient and
better identify women who are at elevated risk for breast
cancer.34

Recent attention has been given to incorporating breast
density into breast cancer risk evaluation models.9–11 How-
ever, the effects of breast density on risk assessment have
been shown to cause only marginal changes in calculated
risk.9,11 This may be due in part to the coarseness of the
current BI-RADS classification scheme, whereas a more
quantitative breast density analysis such as the one presented
here may reveal a more profound impact of breast density on
breast cancer risk. Using our quantitative assessment to dis-
tinguish marginal changes in breast density will be explored
in future longitudinal studies, which include investigating
breast tissue response to treatment and chemoprevention.

V. CONCLUSIONS

The purpose of this paper was to introduce a technique for
computer-assisted segmentation of breast density and to
compare it to the current standard of care in breast density
estimation �i.e., BI-RADS compositional categories�. Our re-
sults suggest that our methods of evaluating breast density
are consistent with the current standard of care, and demon-
strated less intraobserver variability than BI-RADS catego-
ries. In addition, our technique showed a strong positive cor-
relation between two different mammographic views,
including the more representative MLO view. Finally, the
intraobserver error was found to be less than 1% when one
misassignment was excluded.

Our segmentation methods may be implemented for the
objective referral of patients with sufficient risk to justify
MRI screening �e.g., �50% MPD�. In addition, the efficient
utilization of our technique may objectively quantify slight
changes in MPD caused by chemoprevention or dietary in-
tervention to indicate potential reductions in breast cancer
risk. Our methodology offers several advantages, which in-
clude automating the segmentation of the breast from the
background and semiautomating the segmentation of the
chest wall and fibroglandular tissue from the rest of the
breast. Overall, this approach to evaluating breast density has
the potential to provide a more quantitative means of evalu-
ating breast density, thus better elucidating the relationship
that exists between breast density and breast cancer risk.
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