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This paper investigates the sampling criterion needed to image objects within a circular ring array.
The array consists of transducer elements deployed along a circular aperture at regular angular
intervals. Each transducer excites waves which propagate towards the center of the array and detects
outgoing fields traveling towards it. It is shown that while with conventional linear apertures the
sampling criterion is dictated by the wavelength of the probing wave only, in the case of a circular
aperture the sampling depends on the size of the object relative to the wavelength and its position
with respect to the aperture. © 2007 American Institute of Physics. [DOL: 10.1063/1.2717086]

I. INTRODUCTION

A number of imaging methods are based on the measure-
ment of wave fields either radiating from a source or scat-
tered by an object. A typical imaging scenario is depicted in
Fig. 1 in which a probing wave is incident on the object to be
imaged and the scattered field is measured along an aperture.
In the vast majority of imaging applications such as medical
diagnostics, radar surveillance, geophysical exploration, and
nondestructive testing, the aperture is a line or a plane de-
pending on whether two- or three-dimensional imaging is
required. The field is measured either with a single sensor
scanned along the aperture or with an array of transducers
which covers the entire aperture. For a monochromatic wave
field, the minimum spatial interval between consecutive sam-
pling points depends on the wavelength N of the field. In
particular, in order to retrieve the whole information content
carried by the field, the interval should be smaller than \/2
according to the Shannon sampling theorem." Larger sam-
pling intervals lead to artifacts in the reconstructed images
known as grating lobes, whereas oversampling does not add
extra information and results in a more complicated array
architecture.

The question arises whether the Shannon sampling cri-
terion should also be used for circular apertures. The class of
circular apertures considered in this paper refers to ring ar-
rays consisting of transducer elements deployed along a cir-
cular ring at regular angular intervals. Each array element
excites waves propagating towards the center of the array
and detects outgoing waves radiating from the center of the
aperture (Fig. 1). Thanks to recent progress in solid state
electronics ring arrays with hundreds or even thousands of
elements have been manufactured for ultrasound
tomography.zf5 In this context, an accurate definition of the
sampling criterion would help in defining the right balance
between image quality and minimum number of sensors. In-
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deed, Lin ef al.’ have already proposed a sampling criterion
for imaging circular cylinders. In this paper, their results are
generalized to cylindrical objects with arbitrary cross section
and the conditions under which the criterion is applicable are
discussed. Moreover, the structure of the grating lobes is
investigated and compared to that of the grating lobes of
linear arrays.

Section II reviews the sampling theory for linear aper-
tures and provides the framework on which the sampling
criterion for a circular aperture is derived in Sec. III.

Il. LINEAR APERTURE

Conventional imaging methods produce an image of an
object by illuminating it from one or more directions and
recording the scattered field at different positions in space by
means of an array of sensors. The image is reconstructed by
backprojecting or migrating the measured field into a virtual
background medium in an attempt to reconstruct the field
everywhere in the probed region. In ultrasound tomography,
the illumination is carried out by exciting a transient wave of
short duration. In the framework provided by Fourier analy-
sis the transient can always be thought of as a superposition
of monochromatic waves with frequencies ranging within the
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FIG. 1. A plane wave is incident on an object immersed in a homogeneous
background medium. The field scattered by the object is measured with
sensors placed in the far field.
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bandwidth of the transient. For this reason in the rest of this
paper only monochromatic waves are considered, unless dif-
ferently specified.

Let us consider a two-dimensional wave field, a set of
Cartesian coordinates {O,x,z}, and a linear aperture along
the line z=0. Let f(x) be the complex wave field, scattered
by an object and detected along the aperture. The spatial
Fourier transform of f(x), F(k,), can be expressed as

f&) = J h dk,F(k,)e™s". (1)

According to the angular spectrum method,® the back-
projected field at any point in space can be thought of as the
superposition of infinite, elementary plane waves, (x,z),

P (x,2) = dk,F (ke e, 2)
where k, is given by
V2= k2, Kk <k
kZ = - a— (3)

iV”kar - k27 kx > k7

and k=2m/\ is the wave number of the background medium.
The condition k, > k corresponds to evanescent waves which
decay within one wavelength distance from the aperture.

Let us now consider the simple case of a plane wave
field impinging on a linear aperture at normal incidence. If
the field could be measured along all the points of an infi-
nitely wide aperture, the angular spectrum F(k,) would be a
Dirac delta function centered at k,=0 and the backprojected
field would correspond to a single plane wave orthogonal to
the aperture, so providing an exact reconstruction of the in-
cident field. However, in practice the size of the aperture and
the sampling interval are limited; therefore the backprojected
field differs from the original plane wave leading to artifacts.
The artifacts can be studied by analyzing the spectrum of the
actual measurements, which can be expressed as f(x)
=p(x)g(x), where p(x) is the pupil function defining the ex-
tent and apodization of the aperture and g(x) is a periodic
function such that

gx+nA)=¢g(x), Vnel, (4)

where 7, is the set of integer numbers and A represents the
sampling interval. The spectrum of f(x) is the convolution of
the Fourier transform of the pupil function P(k,) and that of
g(x), G(k,). Since g(x) is a periodic function with period A,
it can be expanded in a Fourier series,

n=+%

g) = X a,emo (5)

n=—00

where a,, are coefficients which depend on the size of each
sensor and ko=2/A. The Fourier transform of Eq. (5) gives

n=+0

Gk) = > a,8(k—nkp), (6)

n=—oo

where &(+) is the Dirac delta. As an example, Fig. 2 shows
the modulus of F(k,) for an aperture with a square pupil
function,
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FIG. 2. Amplitude of the angular spectrum of a uniform field measured with
a sampling period A along a linear aperture of size 2a. The wave number &,

defines the propagation direction ¥ of the elementary plane waves according
to the vector diagram.

1, |x|<a
plx) = { (7)

0, |x|>a,

where 2a is the length of the aperture. Since the Fourier
transform of p(x) is

2 sin(k,a)
k 9

X

P(k,) = (8)
the convolution with G(k,) leads to periodic peaks whose
width is 27r/a and which are spaced 27r/A apart. The width
of the lobes only depends on the size of the aperture which
also determines the amplitude of the neighboring side lobes,
whereas the position of the peaks is defined by the sampling
interval only. Clearly, this spectrum is very different from the
one which would be obtained with an infinite aperture and
continuous sampling along it, i.e., 8(k,). Using the angular
spectrum method, F(k,) can be backprojected by integrating
the contributions from all the plane waves associated with
F(k,). The peaks produce larger radiation in the directions
corresponding to k,=nk, (see vector diagram in Fig. 2),
which result in the presence of so called grating lobes in the
reconstructed field. The angle between the grating lobes and
the normal to the aperture 6, is given by

. A

sin(6,) = s Vnel. 9)
For instance, Fig. 3 shows the amplitude of the field radiat-
ing from five point sources equally spaced along an aperture
of size 10N (A=2.5\), the sources having the same phase
and amplitude. This situation corresponds to the field back-
projected by the aperture when the incident field is a plane
wave at normal incidence. The large value of A leads to
grating lobes which occur at +23.6° and +53.1°, as predicted
by Eq. (9).

In Eq. (9) the condition n\/A>1 corresponds to the
case in which k. >k, for which the plane waves are evanes-
cent and decay within one wavelength distance from the ap-
erture. As a result, even if the spectrum has maxima for k,
>k, they do not contribute to the total field far from the
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)0

FIG. 3. Amplitude of the backprojected field corresponding to an incident
plane wave perpendicular to an aperture of size 10\ and a sampling interval
of A=2.5\. The field was obtained as a superposition of the fields radiated
by point sources located at the sampling points, the sources having the same
amplitude and phase. Due to the large sampling spacing the reconstructed
field contains grating lobes at +23.6° and +53.1°.

aperture. In order to avoid the appearance of grating lobes in
the reconstructed field the sampling interval should be such
that

A<\, (10)

The condition A=\ corresponds to grating lobes parallel to
the aperture [see Eq. (9)]. Criterion (10) holds when the in-
cident wave is orthogonal to the aperture, in the more general
case of a plane wave incident at an angle 3, the spectrum
F(k,) is shifted by k, sin B and the first pair of grating lobes
occurs at

in 6, =si ,8+)\ (11)
sin 6, =sin B+ —,
‘ A
. . A
sm6’2=sm,3—Z. (12)

As a result, grating lobes can be avoided by ensuring that the
right hand sides of Egs. (11) and (12) are always larger than
1, leading to the standard Shannon sampling theorem,

A<N2. (13)

As a last remark, it should be noticed that if the aperture
were infinitely wide, condition (13) would ensure a perfect
reconstruction of the field since the field reaching the aper-
ture is band limited (|k,|<<27/\) due to the fact that the
propagation medium (from the object to the aperture) acts as
a low pass filter which suppresses the spatial frequencies
larger than 27/ A0

lll. CIRCULAR APERTURE

Let us now consider a system of cylindrical coordinates
{0, 0, p} with origin at the center of a circular aperture of
radius R (Fig. 1), 6 and p being the azimuthal and radial
coordinates, respectively. The partial wave expansion of a
wave field (6, p) in cylindrical coordinates is

J. Appl. Phys. 101, 083103 (2007)

+00

Wo.p)= > [AH(kp) + B,H? (kp)le™?, (14)

n=—0

where Hil) and H’(lz) are the nth order Hankel functions of the
first and second kinds, respectively, and A, and B, are con-
stants. Each term of the expansion is a solution to the Helm-
holtz equation (V?+k?)y(6,p)=0 and Hl(ll) and Hflz) are
waves propagating outward and inward, respectively. The
field reaching the aperture is given by

()= X [AHDVKR) +B,H (kR)]e™?, (15)

and its Fourier series expansion is the discrete spectrum,
F(n)=A,H(kR) + B,H?(kR), (16)

where n € Z is the angular wave number.

As for the linear aperture, let us consider the simple case
in which the field reaching the aperture is independent of 6.
This situation can occur when the wavelength of the illumi-
nating wave is much larger than the object size, and the
object is located at the center of the aperture. In this case, the
scattered field radiates symmetrically with respect to the cen-
ter of the aperture. Because of the symmetry, only the coef-
ficient A, in the expansion (15) is nonzero whereas B, van-
ishes because it corresponds to an inward wave. If the field is
sampled with N equally spaced sensors, the measured spec-
trum is

F(n)=a, Vne{0,£N,+2N,...} (17)

where the coefficients a, depend on the size of the sensors as
in (6). Using the same argument which leads to the angular
spectrum method, the field obtained by backprojecting the
signal recorded by each sensor, (6, p) is equivalent to the
field given by (14). The coefficients A, and B, are obtained
by equating (16) and (17) and ensuring that (6, p) is non-
singular within the area enclosed by the aperture, thus
a

A =B, =—"—, VY 0,+N, £2N, ... 18
=B= 3w Vet booas)

where J,(+) is the nth order Bessel function of the first kind
and the Hankel function property Hil)(kR)+HElz)(kR)
=2J,(kR) has been used. As a result, the backprojected field
is a standing wave given by

4

¢%(07P):= ES a

m=—o0w

J.nkp) .
N( P) e,mNg

"NNKR)T (19)

the expansion is extended to all the angular wave numbers
which are integer multiples of the number of sampling points
N. For a linear aperture it was observed that only the plane
waves with wave number k, <<k contribute to the field since
for k,>k the plane waves are evanescent and decay within
one wavelength distance from the aperture. A dual argument
holds for expansion (19). In particular, the Bessel functions
J,(-) exhibit both an evanescent and an oscillatory behaviors
depending on the value of their argument and the order n. As
an example, Fig. 4 shows the Bessel function Js,(-). The
function has a maximum at kp=y3,=34.6, which marks the
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FIG. 4. Bessel function of the first kind and order 32. For kp<<34.6 the
function is evanescent while for kp>34.6 it becomes oscillatory.

transition from evanescent to oscillatory behavior. The physi-
cal implication of the transition is that if the series (19) con-
tains the term J,(-), this will not contribute to the field within
a circle of radius p,<1y,/k. The value of 7, depends on the
order of the Bessel function, as shown in Fig. 5, which pro-
vides the ratio a,=7,/n for different orders n; note that in
the limit for large n, a, tends to 1. Since the backprojected
field is the superposition of all the Bessel functions of order
nN, it will contain maxima which occur along the circles of
radii,
[n|N

R,=a,y P Vnel, (20)
so producing circular grating lobes. As an example, Fig. 6
shows the amplitude of the field radiating from 100 point
sources equally spaced along a circular aperture of radius
50\ all having the same amplitude and phase. Three grating
lobes occurring along the circles of radii, 16.5\, 32.6\, and
48.6\, can be observed, as predicted by Eq. (20). By com-

L 1

1 100 200 300 400 500
n

FIG. 5. Ratio a, for different values of the the Bessel function order. For
large orders the ratio tends to 1.
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St i 1
e i
b

0 0 50

FIG. 6. Amplitude of the backprojected field corresponding to an incident
cylindrical wave radiating from the center of a circular aperture of radius
50N and with 100 sampling points equally spaced. The field was obtained as
the superposition of the fields radiating from 100 point sources located at the
sampling points. The dimensions are given in A.

paring Fig. 3 with Fig. 6 it can be observed that while for a
linear aperture the grating lobes span the field of view lin-
early, in the case of a circular aperture the field is spanned
angularly.

To avoid grating lobes within the area enclosed by the
aperture, the first grating lobe R, should occur outside the
aperture, hence the condition R, >R along with (20) gives

A< ap\, (21)

where A is the arc length between two adjacent sampling
points.

Expression (21) has been derived under the assumption
that the field reaching the aperture is uniform; in fact, only
the order zero was considered in the expansion (14). The
result can now be generalized to the case in which the de-
tected field has order /, either positive or negative. This is the
realistic scenario in which the object is probed with a wave-
length which is not much larger than the object size. In this
case the spectrum (17) is shifted by / and the new grating
lobes are defined by

|nN + 1]
Rn = anN+lT’

Vnel. (22)
Note that the backprojected field is still represented by Eq.
(19), where the index mN is replaced by mN+1. As a result,
the first pair of grating lobes occurs at

IN-1]
R_j =y P (23)
. N +1]
+1 = N4 k (24)

The grating lobe with the smallest radius depends on the
largest (smallest) order [ which can reach the aperture. In
order to define an upper bound for |I|, the propagation
mechanism of a wave field from the object to the aperture
has to be studied.
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For this purpose let us consider the field v(6) in the near
zone of the object along the circle of radius ry which circum-
scribes the object (see Fig. 1). In general the field will con-
tain all the outgoing terms appearing in the expansion (15).
The field which travels from the circle of radius r to a larger
circle of radius p is

o HD(kp)
0, ) mﬁ’ 25
W 0,p) = ,,_z_'och(l)(k ) (25)
where
2 )
v, = f dbv(h)e . (26)
0

Now it can be observed that when the argument of a Hankel
function is larger than its order, i.e., kry>n, the function has
asymptotic form’

Hill)(kro) ~ A/ 2 l[kro—n(w/Z 71'/4)] (27)
7Tkr0
so leading to
A /@eik(p—ro), (28)
p

which implies that all the orders n <<kr, propagate to the far
field. This also suggests that the fluctuations of the field v(6)
along the circle of radius r, with a circumferential period
Ap>N\ can reach the far field. Now consider the condition
n>kry. In this case the asymptotic form of the Hankel func-

tiOl’l beComeS
. 2 (] k’ 0

where for large n, the real part is negligible compared to the
imaginary one, thus

H(kp) (@)”
Hi(ll)(kr(]) P .

H(kp)
HO(krg)

H(l) kry) =

(30)

As a result, the fluctuations of v(6) characterized by Ay<A
(n>kry) do not reach the far field because their amplitudes
decay with the nth power of the radial coordinate p rather
than its square root as in Eq. (28).

Therefore, the upper bound for |/| is dictated by the char-
acteristic size of the object r( and is given by

sup{|l|} < kry. (31)

Now that the upper bound has been defined, the sampling
criterion can be derived by imposing that the first grating
lobe occurs outside the region in space which contains the
object, i.e., the circle of radius r, (see Fig. 1). By substituting
(31) into (23) the minimum number of sampling points is

2 1 4
N> 7Tr0<1+ )z ™o (32)
)\ aN_l )\

which means that the separation distance between the sensors
deployed along a circular aperture of radius R has to satisfy
the condition

J. Appl. Phys. 101, 083103 (2007)

A< E. (33)
2ry

Criterion (33) is the extension of the standard sampling theo-
rem (13) to the case of a circular aperture and is equivalent to
the condition introduced by Lin et al.’ for circular scatterers.
This expression is consistent with the sampling criterion for
linear apertures. In fact, for a linear aperture, the \/2 sam-
pling criterion ensures that the entire field of view is imaged
free of artifacts, i.e., the object can be of any size and in any
location in space. If the same has to be achieved with the
circular aperture, then r, has to be the same as R so as to
remove any constraint on the size and position of the object
to be imaged. In this case (33) becomes the same as (13).

It has to be emphasized that (33) has been derived under
the assumption that R is sufficiently larger than ry so that
(ro/R)" is negligible for any order (n>kry), thus ensuring
that high order components of the wave field are filtered by
the background medium and condition (31) holds. On the
other hand, when r( approaches R, it is no longer possible to
define an a priori upper bound and aliasing can occur even if
(33) is satisfied. Moreover, criterion (33) requires that the
object to be imaged is contained within the circle of radius r
concentric with the aperture. If the object is contained within
a circle of radius ry, C;, which is not concentric, the upper
bound will be defined based on the radius of the concentric
circle of radius r> rq which inscribes C;, resulting in a larger
N. Therefore, the sampling criterion depends on the charac-
teristic size of the object relative to the wavelength and its
position with respect to the aperture.

It can be observed that condition (33) can be relaxed if
prior knowledge about the object shape and properties of its
boundary can ensure that the largest order / is lower than that
given by (31). As an example, if the surface of the object is
smooth and its reflectivity is low, the contribution of the
partial waves of order close to kr, will be negligible com-
pared to that of the partial waves generated by more pro-
nounced features close to the core of the object. In this con-
text, ro in expression (33) can be replaced with an effective
radius r.;<<ry, which identifies the region of the object
which is more active in scattering the incident field.

Although the analysis performed in this paper has con-
sidered monochromatic waves, it can be generalized to the
case in which the probing wave is a pulse by means of stan-
dard Fourier analysis. As a result, the backprojected field is
the superposition of the monochromatic backprojected fields
corresponding to the frequencies within the bandwidth of the
probing wave. Depending on the spectral content of the wave
packet, different wavelengths can cause the grating lobes to
interfere constructively or destructively, thus enhancing or
attenuating the amplitude of the grating lobes.

IV. CONCLUSIONS

This paper has investigated a spatial sampling criterion
for imaging objects within a circular ring array consisting of
transducers deployed along a circular aperture. While with
conventional linear arrays it is sufficient to use a sampling
interval smaller than half of the wavelength according to the
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Shannon sampling theorem, in the case of a circular aperture
the sampling interval depends on the size of the object to be
imaged relative to the wavelength and on its position with
respect to the aperture. This is due to the fact that the size
and position of the object determine the maximum circum-
ferential order of the field which reaches the aperture.
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