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ABSTRACT 

Ultrasound tomography is an emerging modality for breast imaging. However, most current ultrasonic tomography 
imaging algorithms, historically hindered by the limited memory and processor speed of computers, are based on ray 
theory and assume a homogeneous background which is inaccurate for complex heterogeneous regions. Therefore, 
wave theory, which accounts for diffraction effects, must be used in ultrasonic imaging algorithms to properly 
handle the heterogeneous nature of breast tissue in order to accurately image small lesions. However, application of 
waveform tomography to medical imaging has been limited by extreme computational cost and convergence. By 
taking advantage of the computational architecture of Graphic Processing Units (GPUs), the intensive processing 
burden of waveform tomography can be greatly alleviated. In this study, using breast imaging methods, we 
implement a frequency domain waveform tomography algorithm on GPUs with the goal of producing high-accuracy 
and high-resolution breast images on clinically relevant time scales. We present some simulation results and assess 
the resolution and accuracy of our waveform tomography algorithms based on the simulation data. 

Keywords: breast imaging, Graphic Processing Units, ultrasound tomography, waveform tomography 

1. INTRODUCTION
Breast cancer is the second-leading cause of cancer death for American women. Early detection is the best known 
means for reducing cancer mortality. Ultrasound tomography imaging techniques show tremendous potential to 
detect and diagnosis early stage breast cancer. The idea of solving acoustic inverse problems in medicine can be 
traced back to the work of Wilde and Reid1 and Howry and Bliss2 in the 1950’s. Since then, a number of 
investigators have developed ultrasound scanners based on the principles of ultrasound tomography.3-9  

So far, mainly two types of ultrasound tomography algorithms are explored by different investigators. The first one 
is a ray-based algorithm which utilizes the eikonal equation and is thus a high frequency approximation that does not 
incorporate diffraction effects.3,10 The second one either incorporates diffraction effects11 or it utilizes full wave 
propagation (waveform tomography).4,5,7 Although a ray based technique is robust and computationally cheap, it 
fails when diffraction effects dominate the recorded ultrasonic data. Waveform tomography models ultrasound 
propagation through tissue using an exact wave equation rather than a ray approximation and is capable of making 
images of greater accuracy and spatial resolution than previously possible. However, application of waveform 
tomography to medical imaging has been limited by the extreme computational cost associated with this approach as 
well as the convergence to local minima in the inversion process. The emergence of Graphic Processing Units 
(GPUs) sheds promising light on alleviating this computational burden. For real data, using the ray-based 
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reconstruction as a starting model for waveform tomography is necessary to overcome convergence issues. 

In this paper we will explore the feasibility of combining waveform tomography with a ring array for breast cancer 
imaging to achieve greater accuracy and spatial resolution than previously possible. We also speed up the 
computation by taking advantage of the GPU computational architecture. Analyses results and reconstruction 
examples are shown in Section 3.  

2. MATERIALS AND METHODS 
 
Although ultrasound waveform tomography for breast imaging is attractive in terms of accuracy and resolution, its 
large computational cost strongly constrains the clinical application of the method. The Delphinus Medical 
Technologies SoftVue system utilizes a blade server design with 8 Tesla GPUs for its standard configuration. This 
provides an ideal platform for realistic application of waveform tomography to clinical breast imaging. In this 
research, we optimize and adapt a frequency domain waveform tomography algorithm for compatibility with the 
SoftVue GPU blade server architecture. We assess the accuracy and resolution of the new method with numerical 
breast models. We also investigate the computational speed of waveform tomography for practical clinical 
applications. 
 
2.1 Ultrasound waveform tomography in the space-frequency domain 
Forward modeling 

Forward modeling of ultrasound waveform tomography can be described by the Helmholtz equation 
 
 (∇ଶ + ݇ଶ)ݑ(߱, ܿ) = ݂(߱), ݇ = ߱ܿ (1)  

where ݇ is the wavenumber, ܿ is the velocity of the propagating media, and ݑ is the Fourier-transformed complex-
valued wavefield. Equation (1) can be represented compactly by 

 

 ܵ(߱, ,߱)ݑ(ܿ ܿ) = ݂(߱) or ݑ(߱, ܿ) = ܵ(߱, ܿ)ିଵ݂(߱) (2)  
where ܵ(߱, ܿ) is the impedance matrix computed by numerical approximation of the underlying partial differential 
equation.12,13 The stencil values were calculated using a 9-point 2-D scalar wave extrapolator.14 We model absorbing 
boundary conditions on the boundary by forcing only inward propagating wave solutions on the boundary. Details 
can be found in Engquist and Majda’s paper.15  

To solve equation (2) for a multiple source problem, it is best to use direct matrix factorization methods such as LU 
decomposition.16 If we use LU decomposition to solve equation (2), we can use the same matrix factors to solve for 
multiple sources without the need to refactor the impedance matrix ܵ. This is critical in terms of computational cost 
for the iterative solution of an inverse problem with multiple sources. In this study, we utilize the highly optimized 
open source package ܷܵܮݎ݁݌ݑ to factorize the matrix ܵ.17,18 

Inversion algorithm 

The inverse problem is to estimate a set of model parameters ܿ  from the recorded data. Assume we have ݊ 
observations recorded by receivers which are evenly distributed along a 20 cm diameter ring which mimics the 
SoftVue transducer ring. To solve the inverse problem, we try to reduce the misfit between the observed data ݀௜ and 
the modelled data ݑ௜(ܿ)  by iteratively updating the model. The modelled data ݑ௜(ܿ)  are based on the model 
parameter ܿ. The residual error ݀ߜ at the ݊ receiver positions is defined as the difference between the modelled 
data and the observed data 
 
௜݀ߜ  = (ܿ)௜ݑ − ݀௜, ݅ = 1, 2,⋯ , ݊ (3)  
From now on, for notational simplicity, we will omit the frequency term ߱. To solve the inverse problem, we try to 
form the cost function ܧ(ܿ) and minimize ݀ߜ in the least-square sense1  
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(ܿ)ܧ  =   (4) ∗݀ߜ௧݀ߜ12

We follow the gradient method to solve equation (4). Consider a parameter ܿ 

 
 ܿ௞ାଵ = ܿ௞ −   ௞ (5)ܧ௞∇௖ߙ
where ݇ is the iteration number and ߙ is the step length chosen by line search or approximation methods. In this 
study, we follow Pratt and Song’s method to solve the inverse problem.12,19 In their method, the gradient is given by  
 
 ∇௣ܧ = ݌߲ܧ߲ = ∗݀ߜ௧ܬ = ,ݒ௧ܨ ݒ = [ܵିଵ](6) ∗݀ߜ  

The matrix ܬ  is the Frechét derivative matrix, ܨ  is the virtual source term, and ݒ  is the back-propagated 
wavefields. For more details on how to solve the inverse problem using virtual sources, the back-propagation 
method, and source estimation, refer to the papers by Pratt and Song et al.12,19 

 
2.2 Sound Speed and Attenuation Reconstruction 
In our study, the model parameter can be represented by ܿ = ܿோ + ݅ܿூ which is the complex-valued velocity of the 
propagating media. The real part ܿோ is the phase velocity of the propagating media, and attenuation is introduced 
through the imaginary part ܿூ . Note that even though the velocity of the propagation medium ܿ  is a complex 
quantity, the cost function is a real quantity. Therefore, in order to use gradient methods to update each individual 
model parameters ܿோ or ܿூ, we consider the cost function to be a function of two real parameters ܿோ and ܿூ. We use 
the real part of the gradient ∇௖ೃܧ, the steepest descent direction, to recover the sound speed information 
 

 ܿோ௞ାଵ = ܿோ௞ −   ௞൯ (7)ܧ൫∇௖ೃ݈ܽ݁ݎ௞ߙ

Likewise, to recover the attenuation information we utilize the real part of the gradient ∇௖಺ܧ 
 

 ܿூ௞ାଵ = ܿூ௞ − ௞൯ܧ൫∇௖಺݈ܽ݁ݎ௞ߙ (8)  
The attenuation is proportional to the frequency and to the inverse of the quality factor ܳ. The quality factor is 
introduced through the imaginary part ܿூ of the complex velocity ܿ.20,21 
 

 1ܳ = 2݇ூ݇ோ = −2ܿூܿோ  (9)  

The sound speed values of soft tissue such as the breast are in the range of ܿோ = 1450 −  and for the ݏ/݉	1550
highest frequency used in our reconstruction 364 kHz, the quality factor chosen is about ܳ = 100  which 
corresponds to an attenuation of 0.065	݀ܤ/݉݉. When iteratively updating, one must choose an initial starting 
model based on a priori information. Thus, after making an initial guess, we could iterate one parameter while 
holding the other constant, and then do the same for the other. Likewise, we could iterate the parameters sequentially 
or in any other manner of our choosing. In practice, incomplete phase velocity information affects the attenuation 
reconstruction more drastically than how incomplete attenuation information affects the phase velocity 
reconstruction. This is due to the fact the scattering of the wave is introduced when there are velocity 
inhomogeneities. Therefore, a rough attenuation model is permissible for sound speed updates, but a more exact 
sound speed model is needed for attenuation updates. 

 
2.3 Accuracy and Resolution Analyses 
To analyze the resolution and accuracy of our waveform tomography algorithm, we simulated a cylindrical model 
consisting of a 50 mm radius 1540 m/s cylinder imbedded in a 1470 m/s background. For attenuation 
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reconstructions, we simulated a cylindrical model consisting of a 50 mm radius with Q = 100 imbedded in a 1540 
m/s background sound speed with no attenuation. The resolution is defined by the distance of the edge response 
between the 10% and 90% values of the data relative to the minimum and maximum values of the reconstruction. To 
see the manner in which the waveform reconstruction converges to the true model as a function of iteration number, 
we can consider the behavior of the cost function. The accuracy is measured by the absolute value of the average 
residual sound speed between the reconstructed image with respect to the true model where the sum is carried over 
all ܰ pixels within a chosen circular region of interest (ROI) of the reconstructed image. 

ݕܿܽݎݑܿܿܽ = อ1ܰ ෍(ݔ[݅]௥௘௖ − ௧௥௨௘)ே[݅]ݔ
௜ୀଵ อ (10)  

2.4 Adapt to GPU Architecture 
The computational expense of waveform tomography is a limiting factor in the feasibility of its use in a clinical 
environment. The expense can be alleviated by utilizing a Graphic Processing Unit architecture. In this study, we 
implement the LU triangular solver using CUSPARSE library from the Nvidia CUDA Toolkit. The computational 
costs of CPU implementation and GPU implementation are compared.   

3. RESULTS
We have applied the described waveform tomography to simulation data and compared the reconstructed images 
with those of ray tomography. We further assess the resolution and accuracy of waveform tomography using 
cylindrical models. GPU speed-up over CPU is also analyzed. 

3.1 Simulation Results of Waveform Tomography 
The discussed waveform tomography algorithms were applied to a numerical breast phantom. Ten discrete 
frequencies from 112 KHz to 364 KHz were used for the reconstruction. Figure 1 shows the resulting sound speed 
image (Figure 1b), along with the true model (Figure 1a), its ray tomography counterpart (Figure 1c), and the 
residual of the waveform sound speed image and true model (Figure 1d).  

     (a)    (b) 

(c)         (d) 
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An estimate of the resolution can be given by the distance required for the edge response to rise from 10% to 90%. 
For the ray-based and waveform sound speed reconstructions, this corresponds to a distance of approximately 15 
mm and 3 mm, respectively. The highest frequency used in the waveform reconstruction was 364 kHz, which for a 
background sound speed of 1500 m/s corresponds to a wavelength of 4.12 mm. The limiting resolution of the 
waveform method should then be approximately 2 = 2/ߣ mm. For a propagation distance of ܮ	200 = mm, the 
limiting resolution of the ray-based reconstruction is on the order of the first Fresnel zone: √14.7 =ܮߣ mm for a 
dominant frequency of 1MHz. From these considerations, we see that the edge response is a fairly accurate measure 
of the limiting resolution in the sound speed reconstructions. 

Due to its complicated nature, the attenuation reconstruction suffers from significant aliasing. Therefore, it is 
cumbersome to characterize its resolution in the same manner that was done for the sound speed reconstruction. We 
will not quote an edge response resolution, but from observing Figure 2 and 3, it can be seen that the attenuation 
reconstruction does have a fairly sharp interface boundary. Recovering the attenuation information is complicated 
because it is impossible to separate intrinsic attenuation due to tissue properties and attenuation due to velocity 
inhomogeneties. Taking attenuation into consideration allows for better modeling of the underlying physics and 
more accurate sound speed reconstructions. The attenuation properties of tissues are also clinically instructive 
because benign and malignant masses generally have different attenuation properties.9 

The accuracy of the reconstructions can be assessed by considering the average residual sound speed of the 
reconstructed sound speed image with respect to the true model. Using an ROI with a radius of 80 mm takes the 
sound speed transition mismatch in to account while neglecting artifacts near the transducer ring. The ray-based and 
waveform reconstructions yield an average residual sound speed of 3.25 m/s and 0.24 m/s, respectively. 

 

 
              (a)                                   (b)                                 (c) 

Figure 3: Midline profiles of sound speed and attenuation reconstructions of a numerical cylindrical phantom. (a) Ray-based 
sound speed. (b) Waveform sound speed. (c) Waveform attenuation. 

The ray-based reconstruction is significantly smoother than the waveform reconstruction; however, the waveform 
reconstruction has better resolution and accuracy. The waveform reconstruction can be made smoother by damping 
the cost function with a regularization method such as Tikhonov regularization. For example, one could penalize 
perturbations ܿߜ to the previous velocity model. 
 

(ܿ)ܧ  = ∗݀ߜ௧݀ߜ12 +   (11) ∗ܿߜ௧ܿߜଶߙ

where ߙ is the regularization parameter. The ripples in the waveform reconstruction, including the dip in the center 
would be reduced by such implementation. Convergence to the true model can be assessed by considering the 
behavior of the cost function as a function of iteration number. The cost functions of both reconstruction methods 
are seen in Figure 4.  

Attenuation in units of 1/Q can be converted to dB/(mm Mhz) by using Figure 5. The plot was obtained by forward 
modeling different Q values in a completely homogeneous 1500 m/s medium with homogeneous attenuation. The 
field values on the aperture were then compensated for geometrical spreading. The dB loss is then given by 
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ݏݏ݋ܮܤ݀  = 20 logଵ଴ ቆ ,߱)ݑ ,߱)ݑ(ܳ ܳ → ∞)ቇ (12)  

The plots in Figure 5 are then given by averaging over all receivers and dividing by the average propagation distance 
and temporal reconstruction frequency. It can be shown20 that the average dB loss is related to the quality factor by 
 

തതതതതതതതതതതݏݏ݋ܮܤ݀  = 20ln 10   2ܿோܳ (13)ݔ̅߱

where ̅ݔ is the average propagation distance and ߱ =  Note that in order to use Figure 5, one needs to use a .݂ߨ2
the temporal frequency ݂ as opposed to the angular frequency ߱. 

  
                             (a)                                                       (b) 

Figure 4: Cost function of waveform reconstructions as a function of iteration number. (a) Sound Speed reconstruction. (b) 
Attenuation reconstruction. 

 
                             (a)                                                       (b) 

Figure 5: Power lost as a function of attenuation (1/Q) and reconstruction frequency. (a) dB/mm. (b) dB/(mm Mhz). 
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3.3 Speed-up of GPU over CPU 

 
Table I: GPU vs. CPU implementation cost 

System to be solved (one 
iteration) 

Su=f STu=f Line search Total cost 

Cost of GPU implementation 
(seconds) 

8.45 4.4 7 23.6 

Cost of CPU implementation 
(seconds) 

13.5 28.2 13.5 58.7 

The computational expense of waveform tomography is a limiting factor in the feasibility of its use in a clinical 
environment. Some of the expense is alleviated by reconstructing in the frequency domain by choosing a discrete set 
of frequencies for inversion. Considering a grid size of 300 x 300 pixels, one iteration of the waveform inversion 
algorithm takes approximately 58.7 s without any GPU support. The computational expense is reduced to 23.6 s 
after we adapt the LU solver part on a Tesla C2050 GPU card. Comparison of computational cost on CPU 
implementation and GPU implementation is shown in Table I where ܵݑ = ݂ represents forward modeling of the 
normal system, ்ܵݑ = ݂ stands for the transposed system, and line search methods are used to find the appropriate 
step length for model parameter update. The SoftVue blade server has 4 blades with two GPUs on each blade. We 
expect adapting the algorithms to the SoftVue architecture will result in more than 2x speed-up over a single GPU 
implementation. 

4. DISCUSSION AND CONCLUSIONS 
In this study, we adapt an ultrasound waveform tomography algorithm to GPU computational architecture. We 
assess the accuracy and resolution of the new imaging algorithms and investigate its computational speed for 
practical clinical applications using numerical breast models. We also show the potential resolution and accuracy 
improvements of the new method from the previous ray-based method. 

As shown in Figure 1, waveform tomography, with only a few very low frequencies, can reconstruct the numerical 
breast phantom with significant advantages over ray tomography. The star shaped inclusion is well recovered in the 
waveform image, while in the ray-based image, all five corners are blurred out. The residual image (Figure 1d) 
demonstrates that waveform tomography not only recovers the edges of all inclusions (high resolution), but it also 
accurately recovers their sound speeds. 

Further quantitative analyses of resolution and accuracy (Figure 3) reveal that the resolution of waveform 
tomography is about one wavelength of the highest frequency used in the reconstruction. The cost function in Figure 
4 shows that the algorithm converges to a global minimum as iterations increase. The average residual sound speed 
error of waveform reconstruction is much smaller than that of ray-based reconstruction. As shown in Figure 3b and 
3c, waveform reconstructions produce several ripples at the anomaly location. These small ups and downs can be 
reduced by applying regularization. The larger ripples in attenuation reconstruction (Figure 3c) are mainly due to the 
wave scattering caused by the sound speed inheterogeneity. Attenuation reconstruction with Tikhnov regularization 
for the same model as in Figure 2 is shown in Figure 6 where the ripples were reduced by adding the regularization 
term.   

The proposed waveform tomography algorithm has been adapted to a single GPU architecture, which achieves a 2.5 
factor of speed-up for a complete iteration. For the part that solves the transposed system, the GPU implementation 
is more than 4 times faster than CPU implementation. The same algorithm will be further optimized on our SoftVue 
GPU blade server that has 4 blades with two GPUs one each of the blades. We expect more than two fold further 
speed-up. 
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