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ABSTRACT

Accurate time delay estimation is critical for a wide range of remote sensing applications. We propose a technique
that exploits the redundancy between absolute and relative time delays in transducer arrays as a means to reduce
the level of noise present in the measurements. We formalize the problem of interest and present two different
strategies to solve it. The first strategy is optimal in the mean square sense but requires a quadratic programming
solver. The second approach is based on a sub-optimal iterative denoising technique. The effectiveness of our
approach is demonstrated in the context of travel time tomographic imaging using numerical and physical breast
mimicking phantoms as well as patient data.

Keywords: breast imaging, iterative denoising, quadratic programming, travel time estimation, ultrasound
tomography.

1. INTRODUCTION

Time delay estimation plays an important role in a large number of applications including source localization,1

and array calibration.2 In ultrasound travel time tomography, the speed of sound can be imaged from travel
time data measured using a transducer array surrounding the propagation medium of interest.3, 4 When this
technique is applied to breast imaging, the sound speed image provides valuable information to detect cancer
in tissues at an early stage.5, 6 In this case, accurate travel time estimation is critical in providing images that
are free of artifacts and that display the correct sound speed values. To this end, a large number of travel time
estimation methods have been designed over the last decades. Some of these methods are deterministic and
exploit a large portion of the input signals, such as cross-correlation-based techniques (see, e.g., Refs. 7,8), while
others are looking at local characteristics, such as the first break detector devised in Ref. 9. Some methods
optimize statistical quantities such as the entropy.10 For a review on existing methods, we refer the interested
reader to the exposition in Ref. 11. Despite the tremendous research effort, accurate travel time estimation
remains a challenging task in practice. Cross-talk among nearby transducers, non-ideal frequency response of
piezoelectric sensors, and strong attenuation in the propagation medium are some of the reasons why the signals
under observation are distorted, making the travel time estimation process difficult. In these scenarios, better
accuracy can be obtained by explicitly taking into account the characteristics of the acquisition device. Another
approach is to increase resilience to noise by means of data redundancy. In this paper, we adopt the later
approach by combining two different travel time data sets measured using existing estimation techniques.

In a homogeneous medium, travel times are highly redundant. In fact, given the positions of the transducers,
the travel times depend solely on a single parameter, namely the propagation sound speed. This redundancy
is useful, for example, for calibration purpose.2 In an inhomogeneous medium, however, such redundancy is
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Figure 1. Tomographic setup with absolute and relative travel time measurements.

generally not apparent. Therefore, in addition to this set of absolute travel times (measured between an emitter
and a receiver), we consider a set of relative travel times (measured between two receivers for a fixed emitter). The
estimation methods for these two types of measurements are usually quite different. Absolute travel times may
be computed using a first break detector,9 while relative travel times can be computed using a cross-correlation
method.4, 7 Our goal is to denoise these measurements jointly as a means to compute travel time estimates with
improved accuracy. The rational behind our approach is to combine the strengths of absolute and relative travel
time estimation techniques.

The outline of the paper is as follows. In Section 2, we formalize the denoising problem as a mean square
minimization. We then present two methods to solve it. The first one resorts to a quadratic programming solver
to find the optimal solution. In scenarios where the complexity of a quadratic solver cannot be afforded, we
propose a second sub-optimal iterative denoising technique that builds upon the characteristic of relative travel
time measurements. We also provide an analytical characterization of the optimal solution which can be used
as the basis for a heuristic approach to travel time denoising. In Section 3, we demonstrate the effectiveness of
our approach using noisy absolute and relative travel times measurements obtained from numerical and physical
breast mimicking phantoms as well as patient data. Conclusions are given in Section 4.

2. TRAVEL TIME DENOISING

2.1 Problem Statement

Consider the tomographic setup depicted in Figure 1. It consists of n ultrasound transducers with positions xi

(i = 0, 1, . . . , n − 1). We denote by ti,j the absolute travel time measured between transducers i and j, and by
δti,j,k, the relative travel time between transducers j and k when a signal is emitted from transducer i. For
a given emitter i, we stack all absolute travel times into a vector ti, such that (ti)j = ti,j . We also form the
relative travel time matrix ΔTi such that (ΔTi)j,k = δti,j,k. It holds that

ΔTi = ti1
T − 1tTi (1)

for i = 0, 1, . . . , n− 1. In the above equation, the vector 1 denotes the all-one vector of size n. In the presence
of noise, however, the above equality does not hold anymore. Therefore, we would like to find the travel times
that solve the following optimization problem

min
ti,j�0,j �=i

ti,i=0

∥
∥
∥ti1

T − 1tTi − Δ̂Ti

∥
∥
∥

2

, (2)

where Δ̂Ti denotes the noisy relative travel time measurements for emitter i. In the above minimization, we
enforce the equality constraint ti,i = 0 to prevent the system from having an infinite number of solutions. In this
case, an absolute travel time is equivalent to a relative travel time where the emitter and the second receiver
are the same (ti,j = δi,j,i). Note that, if reciprocity holds (ti,j = tj,i), the travel times for different emitters can
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be optimized jointly using a similar formulation. The cost function in the above minimization problem can be
rewritten as

∥
∥
∥ti1

T − 1tTi − Δ̂Ti

∥
∥
∥

2

=
∥
∥
∥vec

(

ti1
T − 1tTi − Δ̂Ti

)∥
∥
∥

2

= ‖Ati − bi‖2 ,

where
A =

[
0 CT

1 · · · CT
n−1

]T
and bi = vec

(

Δ̂Ti

)

.

In the above equations, vec denotes the vec operator where the elements in the matrix are scanned circularly
along the diagonals, starting with the main diagonal. The matrix 0 is the all-zero matrix of size n × n, and
Ci the circulant matrix of size n × n whose first row has a one at indices 1 and i+1, and zero elsewhere. The
minimization (2) can thus be written as

min
ti,j�0,j �=i

ti,i=0

tiA
TAti − 2bTAti . (3)

2.2 Proposed Methods

We now present two methods to solve the problem stated above. The first one is based on the observation that
the cost function (3) is of convex quadratic form. A wide range of quadratic programming solvers can be used
to find the optimal solution. In particular, the popular Matlab software provides the function quadprog. The
following proposition provides an analytical characterization of this solution.

Proposition 1. Let C be the circulant matrix of size n×n with first row (n− 1,−1, . . . ,−1), and wi the vector
defined as wi = Δ̄Ti 1 with

Δ̄Ti =
1

2

(

Δ̂Ti − Δ̂T
T

i

)

.

We define V as the set of vectors v of the form v = C̄†wi, where C̄ contains a subset of the columns of the
matrix C with indices j �= i. The (unique) solution of the minimization (3) belongs to V.

Proof. See Appendix A.

The above proposition is generally not of practical interest since it only provides with a large set of candidate
solutions obtained by selecting the inequality constraints active at the optimum. However, in the scenario where
quadratic programming solvers cannot be used (e.g., real-time applications), a heuristic approach is to solve (3)
without the inequality constraints, and then to force the negative elements of the solution to zero. In this case,
a strategy equivalent to that in Proposition 1 is to retain all the columns of the matrix C, multiply its pseudo-
inverse by the vector wi, and subtract the value ti,i to the result. Finally, the negative values can be set to
zero. The advantage of this approach is that the pseudo-inverse can be implemented efficiently using fast Fourier
transforms.

The second approach that we propose does not require quadratic programming solvers but generally provides
with a sub-optimal solution. It is based on the following proposition.

Proposition 2. The relative travel time matrix (1) satisfies the following properties.

1. It is antisymmetric, that is, ΔTi = −ΔTT
i .

2. It has zero diagonal elements.

3. It is of rank at most 2.
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Algorithm 1 Relative Travel Time Matrix Denoising

Input: A noisy relative travel time matrix Δ̂Ti.
Output: A cleaned relative travel time matrix ΔTi.
Procedure:

1. Set m = 0 and Δ̂T
(m)

i = ϕ1(Δ̂Ti).

2. Compute Δ̂T
(m+1)

i = ϕ3(ϕ2(Δ̂T
(m)

i )).

3. If ‖Δ̂T
(m+1)

i − Δ̂T
(m)

i ‖ < ε for some prescribed threshold ε, go to step 4. Otherwise, set m← m+ 1 and
go to step 2.

4. Output the matrix Δ̂T
(m+1)

i .

Proof. The first two properties are trivial. The third one follows directly from the definition (1) since
rank

(

ti 1
T − 1 tTi

)

� rank ti 1
T + rank 1 tTi � 2.

The third property suggests that, in the noiseless case, the entries of the matrix ΔTi are highly redundant.
The intuition is that this redundancy can be used to denoise the travel time data. With noisy measurements,
however, some of the above properties may not be satisfied. The idea is to successively enforce these properties
as a means to denoise the travel time data. This is achieved by successively applying a number of mappings on
the noisy matrix. The first mapping ϕ1 enforces the antisymmetry of the matrix and is defined as ϕ1(ΔTi) =
(ΔTi − ΔTT

i )/2. The second mapping ϕ2 ensures that the matrix has zero diagonal elements by setting
(ϕ2(ΔTi))j,k = (ΔTi)j,k if j �= k, and zero otherwise. The third mapping implements the low rank condition
by only retaining the two largest singular values. It is defined as ϕ3(ΔTi) = U2Λ2V

T
2 , that is, the best rank 2

approximation of ΔTi using its singular value decomposition. The proposed denoising procedure is summarized
in Algorithm 1. It amounts to successively applying the above mappings on the original noisy data. Note that
the antisymmetry condition imposed by the function ϕ1 is not violated by any of the subsequent mappings. It
thus only needs to be applied at the beginning of the algorithm. The convergence of this iterative procedure to
a matrix that exhibits all of the three desired properties is supported by the following result.

Proposition 3. Any matrix sequence generated using Algorithm 1 contains a sub-sequence which converges to
a matrix satisfying the three desired properties.

Proof. The functions ϕ2 is a continuous point-to-point mapping, and ϕ3 is a closed point-to-set mapping
(Theorem 2 of Ref. 12). Therefore, the composite point-to-set mapping ϕ = ϕ3ϕ2 used in Algorithm 1 is closed
(Lemma 2 of Ref. 12). From Theorem 1 of Ref. 12, any sequence generated according to the update rule in step
2 of Algorithm 1 thus contains a subsequence that converges to a matrix satisfying the desired properties.

It can be easily checked that the Frobenius norm of the relative travel time matrix is reduced at each iteration.
This reduction quantifies the amount of noise that is removed by the method. At the end of the iterations, the
de-noised absolute travel time vector t̂i can be read from the ith column of the denoised relative travel time
matrix. A constraint of non-negativity can be applied subsequently. Unlike the previous approach, this iterative
method is sub-optimal since there is no guarantee that the denoised relative travel time matrix produced by
Algorithm 1 is closest in Frobenius norm to the original one.

2.3 Practical Considerations

In practice, it is generally not possible to measure all the entries of the relative travel time matrix. The reasons
are manifold. First of all, the signals measured between some transducer pairs are too noisy to provide relevant
absolute travel time estimates. This can happen, for example, if the incidence angle of the propagating wavefront
is too large compared to the transducer beam width. The distortion incurred by a frequency dependent angular
response also has an adverse effect on the estimation of the travel time. Moreover, the signal may be significantly
attenuated by the propagation medium (e.g., in dense breast), preventing a reasonable estimate of the travel time.
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Figure 2. Travel time estimation error using the proposed algorithms.

Relative travel time estimation between two signals (e.g., using a cross-correlation method) becomes challenging
when the signals have different shapes. The method thus works best for nearby transducers.

For the above reasons, the relative travel time matrix is generally incomplete. In this case, the quadratic
solver can still be used by simply removing the entries that are not available. With the iterative approach,
however, missing entries must be first interpolated. Low-rank matrix completion algorithms can be used for
that purpose (see, e.g., Ref. 13). Since our matrix is very specific, custom interpolation techniques based on
geometrical considerations can also be devised.

3. RESULTS

3.1 Numerical Phantom

To demonstrate the effectiveness of our approach in the context of ultrasound tomography, we have considered
the numerical sound speed phantom shown in Figure 3(a). It is imaged by an array of n = 64 transducers. The
data set has been generated using the time-domain waveform propagation scheme described in Ref. 14. Absolute
travel times have been estimated using the method exposed in Ref. 9. Relative travel times have been computed
from these absolute travel times, and additive white Gaussian noise has been added to meet a desired SNR.

In Figure 2, we plot the RMSE of the estimated travel times as a function of the SNR for the original noisy
data, the data denoised using the iterative algorithm, and the data denoised using the mean-square optimal
approach by means of a quadratic programming solver. We observe that significant noise reduction can be
achieved using the proposed methods. The iterative technique, while being suboptimal, achieves most of the
noise reduction. In this case, only a couple of iterations were needed. In Figure 3, we plot the sound speed
images reconstructed from the three travel time data sets obtained with an SNR of 30 dB. We observe that
the proposed denoising methods significantly improve the image quality. Moreover, we can clearly visualize the
sub-optimality of the iterative scheme compared to the optimal quadratic programming method.

3.2 Physical Phantom and Patient Data

The synthetic results presented above demonstrate the potential of our approach in an ideal scenario. In practice,
however, it is impossible to measure the entire set of relative travel time differences. In fact, only signals acquired
by nearby transducers can be accurately compared by means of a cross-correlation method. The denoising power
of the proposed method is thus greatly reduced. For these experiments, the data sets were acquired using the
256 transducer ring of the CURE prototype at the Karmanos Cancer Institute.5 We have generated absolute
travel times using the first break detector devised in Ref. 9. Relative travel times were generated using the simple
cross-correlation method used in Ref. 4. For each receiver, we have considered an aperture composed of the four
closest receivers (two on each side). In other words, our relative travel time matrix is a band diagonal matrix
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Figure 3. Sound speed reconstructions using travel time tomography. (a) Original sound speed image. Reconstruction
using (b) the noisy data set, (c) the data set denoised using the iterative algorithm, and (d) the data set denoised using
the optimal algorithm.
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Figure 4. Sound speed reconstruction of a breast mimicking phantom. (a) Reconstruction using the original data set. (b)
Reconstruction using the denoised data set.
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Figure 5. Sound speed reconstruction of patient data. (a) Reconstruction using the original data set. (b) Reconstruction
using the denoised data set.

with a band of width five. The quadratic programming method was used to denoise the absolute travel time
measurements.

In Figure 4, we show the reconstruction results obtained for a physical breast mimicking phantom. We
observe that the denoised image is generally smoother but provides a sharper rending of the boundaries of the
subcutaneous fat layer. Absolute travel times along the rays delimiting these boundaries are usually difficult
to estimate due to refraction effects. In this case, the information obtained by comparing neighboring signals
provides good denoising capability. Due to the limited number of relative travel time measurements, the denoising
power is however significantly smaller than the synthetic case presented above.

In Figure 5, we consider the reconstruction of a patient data set. In this scenario, the relative travel time
estimates allow to reduce the artifacts that arise in the 7 o’clock region due to the lack of absolute travel time
information. This information recovery can also be visualized on the absolute travel time matrices displayed in
Figure 6. We clearly observe that a large number of the missing travel time measurements (set to 0) can be
estimated using the proposed denoising method. A few ray artifacts arising in the same region are also reduced.

4. CONCLUSIONS

We have presented a novel denoising method that uses relative travel time estimates to denoise absolute travel
time measurements. The effectiveness of our scheme has been demonstrated in the context of ultrasound tomog-
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Figure 6. Travel time denoising using patient data. (a) Original travel time matrix. (b) Denoised travel time matrix.

raphy using numerical and physical breast mimicking phantoms as well as patient data. We have shown that
the denoising capability of the proposed scheme depends on the availability of a large set of relative travel time
measurements computed between an aperture of nearby transducers. The cross correlation method used in this
paper is fairly simple and works best for small apertures. Further research is needed to find relative travel time
estimation techniques that allow for larger apertures in order to use the full potential of the proposed denoising
scheme.

APPENDIX A. PROOF OF PROPOSITION 1

The cost function (2) can be expressed as
∥
∥
∥ti1

T − 1tTi − Δ̂Ti

∥
∥
∥

2

= 2n ‖ti‖2 − 2 tr
(

tTi 1 t
T
i 1
)

+ tr
(

Δ̂Ti Δ̂T
T

i

)

− 2 tr
(

Δ̂Ti

(

1tTi − ti1
T
))

= 2n ‖ti‖2 − 2 tr
(

tTi 1 t
T
i 1
)

+ tr
(

Δ̂Ti Δ̂T
T

i

)

− 4 tr
(

Δ̄Ti 1t
T
i

)

,

where in the second equality we use the fact that tr (A) = tr
(

AT
)

and tr (AB) = tr (BA) for conforming
matrices, and define

Δ̄Ti =
1

2

(

Δ̂Ti − Δ̂T
T

i

)

.

Defining wi = Δ̄Ti 1, the minimization (2) can be rewritten as

min
ti,j�0,j �=i

ti,i=0

∥
∥
∥ti1

T − 1tTi − Δ̂Ti

∥
∥
∥

2

= min
ti,j�0,j �=i

ti,i=0

2n ‖ti‖2 − 2
(

tTi 1
)2 − 4wT

i ti

= min
ti,j�0,j �=i

ti,i=0

n

n−1∑

j=0

t2j −
⎛

⎝

n−1∑

j=0

tj

⎞

⎠

2

− 2

n−1∑

j=0

wjtj .

Let us define f(ti) as the above cost function, gj(ti) = −ti,j � 0 as the inequality constraints, and h(ti) = ti,i = 0
as the equality constraint. Since f and gj are continuously differentiable, and h is affine, the Karush-Kuhn-Tucker
conditions provide necessary and sufficient conditions for optimality. In particular, the stationarity condition

∇f(t̂i) +
∑

j �=i

μj∇gj(t̂i) + λ∇h(t̂i) = 0

implies that the multipliers μj must satisfy

μj = 2

(

n t̂i,j −
n−1∑

k=0

t̂i,j − wi,j

)

.
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The complementary slackness condition μjgj(ti) = 0 evaluates as

(

n t̂i,j −
n−1∑

k=0

t̂i,j − wi,j

)

t̂i,j = 0 .

The solution t̂ thus satisfies
C t̂i = wi ,

where C is the circulant matrix defined in Proposition 1. The above system of equations has an infinite number of
solutions. When no inequality constraint is active at the optimum, the optimal solution can be found by removing
column i of the matrix C and find the solution using its pseudo-inverse. When some inequality constraints are
active at the optimum, the corresponding columns must also be removed. In general, the optimal solution belongs
to the set of vectors V defined in Proposition 1.
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