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Previous ultrasound tomography work conducted by our group showed a direct correlation between
measured sound speed and physical density in vitro, and increased in vivo sound speed with
increasing mammographic density, a known risk factor for breast cancer. Building on these empiri-
cal results, the purpose of this work was to explore a metric to quantify breast density using our
ultrasound tomography sound speed images in a manner analogous to computer-assisted mammo-
gram segmentation for breast density analysis. Therefore, volumetric ultrasound percent density
�USPD� is determined by segmenting high sound speed areas from each tomogram using a k-means
clustering routine, integrating these results over the entire volume of the breast, and dividing by
whole-breast volume. First, a breast phantom comprised of fat inclusions embedded in fibroglan-
dular tissue was scanned four times with both our ultrasound tomography clinical prototype �with
4 mm spatial resolution� and CT. The coronal transmission tomograms and CT images were ana-
lyzed using semiautomatic segmentation routines, and the integrated areas of the phantom’s fat
inclusions were compared between the four repeated scans. The average variability for inclusion
segmentation was �7% and �2%, respectively, and a close correlation was observed in the inte-
grated areas between the two modalities. Next, a cohort of 93 patients was imaged, yielding
volumetric coverage of the breast �45–75 sound speed tomograms/patient�. The association of
USPD with mammographic percent density �MPD� was evaluated using two measures: �1� quali-
tative, as determined by a radiologist’s visual assessment using BI-RADS Criteria and �2� quanti-
tative, via digitization and semiautomatic segmentation of craniocaudal and mediolateral oblique
mammograms. A strong positive association between BI-RADS category and USPD was demon-
strated �Spearman �=0.69 �p�0.001��, with significant differences between all BI-RADS catego-
ries as assessed by one-way ANOVA and Scheffé posthoc analysis. Furthermore, comparing USPD
to calculated mammographic density yielded moderate to strong positive associations for CC and
MLO views �r2=0.75 and 0.59, respectively�. These results support the hypothesis that utilizing
USPD as an analogue to mammographic breast density is feasible, providing a nonionizing, whole-
breast analysis. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2964092�
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I. INTRODUCTION

Emerging evidence has shown that women with high mam-
mographic breast density are at four to five-fold increased
risk of developing breast cancer.1–4 The appearance of
breasts in mammograms varies due to differences in the
amount of fat, connective, and epithelial tissues present.5 Fi-
broglandular and connective tissues �i.e., glands, ducts, and
fibers� have high x-ray attenuation, rendering them radiologi-
cally dense and appearing light on radiographic films. By
contrast, fat appears radiolucent, or dark, on a processed
film. Because of the distinct differences in x-ray attenuation
between fat and fibroglandular tissue, segmentation of fibro-
glandular tissue from the rest of the breast is possible. Thus,
mammographic percent density �MPD� can be calculated as
the ratio of fibroglandular tissue area divided by the total
breast area. Increased MPD has proven to be more prognos-

tic of overall breast cancer risk than nearly all other risk
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factors.6–9 Further, having elevated breast density is fairly
common; research has shown �25% of all women exhibit
dense breasts,5 while up to �40% of women in their forties
show evidence of this trait.8 By contrast, an estimated 2%–
10% of women exhibit the two breast cancer susceptibility
genes, BRCA1 and BRCA2.10–13 These data suggest that
women with breast cancer attributable to increased breast
density are likely to form a significant percentage of overall
breast cancer cases, and as a result, finding new techniques to
quantify breast density is particularly advantageous.

Perhaps the most remarkable characteristic of breast den-
sity is the fact that it can be modified. This is significant
because many contributing factors for breast cancer risk �i.e.,
age, family history� cannot be changed. Because breast den-
sity can be altered, it has been suggested for use as a surro-
gate marker,14 intermediate phenotype for breast cancer,15

16,17
and indicator for monitoring potential preventive or
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therapeutic strategies.18–22 Hormones play an integral role in
breast density change; Tamoxifen18,23 and other chemopre-
ventative agents such as soy isoflavones have been shown to
decrease breast density.24–26 Furthermore, identifying women
with elevated breast cancer risk due in part to increased
breast density may better enable preventive measures �i.e.,
more frequent screening or chemopreventative agents� that
have the potential to reduce breast cancer incidence.

However, the standard of care in breast density evaluation
currently involves radiologists’ visual assessment of mam-
mograms using the four-category Breast Imaging Reporting
and Data System �BI-RADS� lexicon. This subjective classi-
fication has proven to be limited due to considerable intra-
and interreader variability.27,28 Several groups have also es-
timated quantitative breast density from digitized film-screen
or digital mammograms via computer-assisted segmentation
routines.29–32 While these approaches have proven to be
more accurate for breast density evaluation, digitizing mam-
mograms is cumbersome and time consuming, thereby mak-
ing it impractical to carry out larger studies. While digital
mammography eliminates the need for digitization, mammo-
graphic breast density estimates were found to be signifi-
cantly lower using digital mammography—due to more sub-
cutaneous fat being included near the skin/background
boundary—than in film-screen mammography.33 This im-
plicitly suggests that breast cancer risk assessment would, in
turn, be underestimated when measured with digital mam-
mography. Regardless of the images being digital or film-
screen, mammograms, by definition, both still represent a 2D
projection that cannot provide an accurate volumetric esti-
mate of the density due to the breast thickness not being
taken into account.

Most likely, breast cancer risk would be more strongly
related to the volume of dense tissue as opposed to the pro-
jected area. To this end, efforts have been made to estimate
volumetric breast density through computational
modeling,34,35 evaluating whole-breast MRI sequences,36,37

and calibrating screen-film images with step wedges.32 The
volumetric measure that we are presenting, however, is novel
due to using ultrasound tomography transmission images
�i.e., sound speed� to provide estimates of volumetric breast
density. Previous work conducted by our group showed a
direct correlation between the measured sound speed and
physical density of phantom inclusions.38 We also demon-
strated an increase in global breast sound speed with increas-
ing mammographic density in vivo.38 Building on these em-
pirical results, the purpose of this work was to explore the
quantification of breast density using our ultrasound tomog-
raphy sound speed images in a manner analogous to
computer-assisted mammographic percent density segmenta-
tion. Therefore, volumetric ultrasound percent density
�USPD� is determined by segmenting high sound speed areas
from each tomogram using a k-means clustering routine, in-
tegrating these results over the entire breast, and dividing by
whole-breast integrated area as described in the Methods sec-
tion. As an initial proof of concept, we demonstrate results
from an anthropomorphic breast phantom experiment to di-

rectly compare segmented areas from both coronal CT im-
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ages and sound speed tomograms. Further, we present in vivo
USPD results and evaluate them with two methods of breast
density estimation: �1� the current standard of care �e.g., BI-
RADS categories� and �2� quantitative breast density mea-
surements obtained through calculated MPD.

II. METHODS AND MATERIALS

II.A. Breast phantom scanning procedure

All ultrasound tomography scans were performed with
our in-house clinical ultrasound tomography prototype,
Computerized Ultrasound Risk Evaluation �CURE�, located
at Karmanos Cancer Institute �KCI�. Previous publications
describe machine operation, image reconstruction, and over-
all performance in detail.39,40 At the time of analysis, the
spatial resolution of our transmission measurements were
�4 mm and sound speed could be measured to an accuracy
of �+ /−5 m /s per voxel.39 The slice thickness of the sound
speed images is 10 mm.

As an initial proof of concept, an anthropomorphic breast
phantom with tissue-equivalent ultrasound characteristics
�i.e., density and sound speed� was scanned. The phantom
consisted of fat inclusions �density=0.94 g /cc�—with diam-
eters ranging from 6 to 12 mm—embedded in simulated fi-
broglandular breast tissue �density=1.05 g /cc�. Fig. 1 �left�
shows the CURE breast phantom and Fig. 1 �right� demon-
strates the placement of the phantom in the center of the
transducer ring during scanning. In addition, the phantom
was scanned, positioned on its base, with a Siemens Soma-
tom Sensation CT scanner �axial slice thickness=1 mm,
coronal reconstruction thickness=1 mm, mAs=140, topo-
gram length=256 mm, B31 medium smooth reconstruction
kernel�. CT is a well-established imaging modality with
coronal axis reconstruction available, a characteristic essen-
tial for direct comparison to our CURE tomograms. In a
clinical setting, MRI would be the preferred modality for
comparison due to the American College of Radiology’s re-
cent recommendation of its use in breast cancer screening.41

However, the breast phantom was not MRI-compatible due
to its metallic base, and CT served as a suitable alternate
despite not typically being employed for breast cancer
screening. Furthermore, CT is an x-ray imaging modality

FIG. 1. Left: the breast phantom provides tissue-equivalent scanning char-
acteristics with simulated fat inclusions embedded in fibroglandular tissue.
Right: close up of the phantom surrounded by the transducer ring that trans-
lates in the z-direction to image the entire phantom volume.
and, therefore, more closely related to the comparisons
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in vivo with mammography. The phantom was scanned with
both CURE and CT at four different timepoints. Beekley
CT-Spots® 4.0 mm nonlead pellets were placed on the phan-
tom for consistent experimental setup and orientation be-
tween timepoints and modalities. These markers were kept in
place for subsequent CT and CURE scans.

The driving hypothesis for this experiment is that if esti-
mated CT scan inclusion volumes �integrated areas� are com-
parable to those obtained from CURE sound speed tomo-
grams, then a quantitative measure derived from sound speed
scans would be a feasible indicator of tissue volume. Note
that for this phantom experiment, we are directly comparing
integrated areas of simulated fat inclusions segmented from
fibroglandular tissue and not calculating USPD. This is
meant to evaluate the reproducibility of the sound speed seg-
mentation and the ability to discriminate between fat and
fibroglandular simulated tissue.

II.B. Image segmentation and reproducibility

Both CURE sound speed images and corresponding
CT scans were imported into the public domain soft-
ware IMAGEJ �available at: http://rsb.info.nih.gov/ij/
download.html� for subsequent image analysis.42 For each
sound speed and CT tomogram, fat inclusions were seg-
mented using a k-means clustering routine previously
described.38,43 Briefly, k-means clustering employed pixel-
based segmentation where each cluster �n� was defined by its
centroid in n-dimensional space and established using
heuristics.29,43,44 User input determined the number of clus-
ters to segment each inclusion. The area for each fat inclu-
sion was calculated on a slice-by-slice basis using IMAGEJ’s
built-in “analyze particles” function, and an overall volumet-
ric estimate of inclusion volume was calculated by integrat-
ing the areas over the entire scanning series. This technique
was applied for all four CT and all four CURE scans. To
estimate the segmentation variability, the mean integrated
area, standard deviation, and standard error were calculated
for each fat inclusion in all four scans from both modalities.
Finally, the inclusion volume estimations from CURE were
compared to those obtained from CT.

II.C. In vivo dataset

The patients in this study were recruited from the Walt
Comprehensive Breast Center located at KCI, with all imag-
ing procedures being performed under an Institutional Re-
view Board approved protocol, with patient informed con-
sent, and in compliance with the Health Insurance Portability
and Accountability Act. The patient population included 93
case sets and provided a variety of breast shapes and densi-
ties, with a mean age of 48.2 years �range: 21–85�. For the
CURE scan, the patients were in the prone position with the
whole breast �i.e., ranging from near the chest wall to the

nipple region� being imaged.
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II.D. In vivo ultrasound percent density „USPD…

Because the current protocol for CURE patient recruit-
ment involved patients with masses of approximately 1 cm,
these masses were segmented from the sound speed image
stack. To identify the extent and location of abnormalities, a
radiologist with over 10 years of advanced imaging experi-
ence consulted mammograms and conventional ultrasound
images. The corresponding CURE reflection images, which
emphasize reflecting boundaries and are inherently registered
to transmission images as described in previous work,40 were
also used to localize abnormalities. These regions were then
segmented from each sound speed tomogram using a semi-
automatic routine and excluded from both the dense and total
breast integrated areas to allow a more accurate calculation
of volumetric breast density. Approximately 40% of the pa-
tients recruited had cysts or complex cysts, which do not
currently affect the sound speed images of the breast due to
having negligible sound speed differences from breast tissue.
For these cases, masses were not segmented from the image
stack.

As described in previous work, dense phantom inclusions
in vitro and dense breasts in vivo have demonstrated in-
creased sound speed using our ultrasound tomography clini-
cal prototype.38 To calculate in vivo USPD, dense paren-
chyma regions were segmented from the rest of the breast by
implementing the k-means clustering routine previously de-
scribed in Section II A. Here, the user selected the number of
clusters needed to segment elevated sound speed regions
from the sound speed tomogram. USPD was calculated in
the following manner: if we define a as the first slice near the
chest wall, b as the final slice in the image stack at the nipple
region, AD as the dense region of high sound speed, deter-
mined using k-means clustering, for that particular slice, and
A as the total breast area for that slice, the volumetric ultra-
sound percent density �USPD� can be calculated using the
following equation:

USPD�%� =
�n=a

b AD

�n=a
b A

� 100 % .

In other words, high sound speed regions were segmented
for each tomogram, and the total number of dense voxels
was calculated as the integration of high sound speed region
areas over the entire breast volume. The total breast area was
then estimated for each tomogram, and the voxels were
summed over all slices in the breast ��45–75 tomograms�.
Finally, USPD was calculated as the ratio of high sound
speed to total breast integrated areas and converted to a per-
centage.

II.E. Effect of slice selection

The current acquisition of our data results in a sound
speed slice thickness of 10 mm, with 1 mm contiguous slices
that yield �45–75 sound speed slices for each patient. How-
ever, the elevation beam of our instrument oversamples each
slice by a factor of 5 or more. Therefore, an experiment was

conducted to determine the effect of reducing the number of
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slices used to calculate USPD, without introducing a sub-
stantial loss of information. A subsample of 10% of the pa-
tient population �n=10� of varying breast densities was ana-
lyzed using two different approaches: �1� by segmenting
every tomogram, and �2� by segmenting every fifth tomo-
gram. A comparison was then made between the two tech-
niques to determine the impact of tomogram reduction on
overall USPD.

II.F. BI-RADS Category analysis

As an independent evaluation of our approach, we com-
pared the USPD to the current standard of care for breast
density analysis �i.e., BI-RADS categories�. A board-certified
radiologist with over 10 years of mammography experience
examined the mammograms corresponding closest to the
CURE exam date, and assigned each patient into a BI-RADS
compositional category of: �1� almost entirely fat ��25%
glandular�, �2� scattered �25%–50% glandular�, �3� heteroge-
neously dense �51%–75% glandular�, and �4� extremely
dense ��75% glandular�. The resulting population distribu-
tion is shown in Table I.

A one-way ANOVA tested for significant differences in
mean USPD between BI-RADS categories and a Spearman
correlation coefficient was calculated to determine the asso-
ciation between the two variables.

II.G. Quantitative breast density analysis

To determine a more quantitative comparison of MPD,
mammograms acquired closest to the CURE exam date
�typically within 1 month� in the craniocaudal �CC� and me-
diolateral �MLO� projections were digitized with a Vidar
VXR-16 Dosimetry Pro digitizer using a TWAIN interface
�version 5.2.1� with the following parameters: logarithmic
translation table, 71 dpi resolution, and an 8-bit depth. Pre-

TABLE II. Mean integrated areas and statistics for e
CURE sound speed and CT scans.

Phantom component
�clock position�

CT inclusion

Area�Standard deviation
�pixel2�

Large fat �12:00� 7517�123
Large fat �4:00� 7625�134
Small fat �center� 1136�44
Small fat �7:00� 1019�24

TABLE I. The BI-RADS compositional category distribution for the patient
population.

BI-RADS compositional category Patient sample �% of population�

1: Fatty ��25% � 11 �12%�
2: Scattered �26%–50%� 60 �65%�
3: Heterogeneous �51%–75%� 16 �17%�
4: Dense ��75% � 6 �7%�
Medical Physics, Vol. 35, No. 9, September 2008
vious work has shown this resolution and depth to be suffi-
cient for MPD calculation,29 particularly because as a ratio,
MPD is known to be a coarse measure.45 A segmentation
routine for breast density evaluation, described in detail
elsewhere29,38 was then employed. Finally, we compared the
USPD to calculated MPD for both CC and MLO views, and
corresponding associations between the variables were deter-
mined.

III. RESULTS

III.A. Phantom analysis

Figure 2�a� shows the phantom cross section as provided
by the manufacturer at time of phantom construction, where
F denotes “fat” and the remainder is fibroglandular tissue.46

Shown also is a sound speed tomogram �b, top� and resulting
k-means clustering inclusion segmentation �b, bottom�, and
finally, the corresponding CT tomogram �c, top� and its cor-
responding segmentation �c, bottom�. The fat inclusions and
subcutaneous fat layer were readily distinguishable from the
surrounding fibroglandular tissue in both the CT scan and
CURE sound speed tomogram. Furthermore, the k-means
clustering routine used in segmentation clearly demarcated
the boundary between each fat inclusion and surrounding
fibroglandular tissue. The mean integrated area and descrip-
tive statistics for the four CT and CURE sound speed scans

phantom component segmented from four different

Sound speed inclusion

tandard
error

Area�Standard deviation
�pixel2�

Standard
error

61 6868�161 80
67 7139�629 314
22 2091�190 95
12 1983�146 73

FIG. 2. �a� Phantom cross section as provided by the manufacturer, where F
denotes “fat” and the remainder is fibroglandular tissue �Ref. 46�, �b� a
sound speed tomogram �top� and the resulting k-means clustering segmen-
tation of the inclusions from the sound speed scan �bottom�, and �c� a CT
tomogram �top� with its corresponding segmentation �bottom�.
ach

S
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are summarized in Table II. In order to directly compare the
sound speed areas to the CT areas, the sound speed images
�440�440 pixel2�, were scaled to have the same size as the
CT scans �512�512 pixel2�.

Figure 3 better illustrates the comparison between the
mean integrated areas for each CT and sound speed scan
inclusion. The error bars indicate one standard deviation of
the mean. The reproducibility of segmentation analysis for
consecutive CT and CURE scans was also assessed. Overall,
the average standard deviation for CT integrated areas was
2.4% of the mean �range: 1.6%–3.9%� and 6.9% of the mean
�range: 2.3%–9.1%� for sound speed.

III.B. In vivo results

III.B.1. Segmentation

Figure 4 �left� shows a typical patient sound speed tomo-
gram, with varying sound speed patterns ranging from
�1400 to �1550 m /s �shown in the scale�. Applying
k-means clustering segmentation to the sound speed tomo-
gram with four clusters yields the segmentation shown in
Fig. 4 �right�, with the scale indicating the number of clus-
ters. This example illustrates that high sound speed regions
are readily discernible from the rest of the breast by imple-
menting the segmentation routine.

TABLE III. The mean USPD, standard deviation of th

BI-RADS category Mean UPSD�

1 20
2 27
3 40
4 60
Total 30

FIG. 3. A comparison of the integrated area for the segmented CT scan and
the segmented sound speed scan the CURE phantom. The sound speed scans
underestimated both large fat inclusions, which may be due to partial vol-
ume effects.
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III.B.2. Tomogram reduction

For the patient data, an experiment was performed to de-
termine the effects of using every fifth sound speed slice as
opposed to using every slice in the USPD analysis. Figure 5
shows the correlation of the USPD results for every slice
compared to every fifth slice. A strong positive association
�Pearson r=0.994, p�0.001� was observed between the
USPD for segmenting every slice and every fifth slice, with a
standard error of the estimate of 1.93. A linear fit through the
data points yielded the following equation: y=1.05x–2.59,
where y indicates the USPD using every fifth slice and x is
the calculated USPD using every single slice.

III.B.3. Correlation with BI-RADS categories

As a comparison to the current standard of care for breast
density analysis, we compared the USPD using every fifth
slice to BI-RADS categories, and the results are summarized
by the boxplot in Fig. 6. In general, a strong positive asso-
ciation was observed between USPD and BI-RADS category
�Spearman �=0.69, p�0.001�. A one-way analysis of vari-
ance revealed that a significant difference existed between
the mean USPD among BI-RADS categories �p�0.01�. Fur-
ther posthoc analyses using the Scheffé criterion indicated
that significant differences in mean USPD were observed
between each BI-RADS category ��=0.05�. Table III below
best summarizes the descriptive statistics of the USPD cal-
culation for each BI-RADS category.

Notably, the mean difference in USPD between fatty
breasted patients �BI-RADS 1� and dense breasted patients
�BI-RADS 4� was approximately 39.5% �standard error

an, and standard error for each BI-RADS category.

dard deviation �%� Standard error

6.75 2.04
6.62 0.85
7.55 1.89
7.65 3.12
11.83 1.22

FIG. 4. �Left� Sound speed tomogram �scale is sound speed in m/s� and
�right� k-means clustered sound speed image �scale is cluster number�. Note
the high sound speed regions are clearly demarcated by using the clustering
technique.
e me

Stan

.48�

.02�

.62�

.03�

.72�
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=3.5%�. Comparing USPD to the current standard of care is
important to determining the clinical relevance of our tech-
nique.

III.B.4. Correlation with MPD

To further validate our approach, we compared USPD to
calculated mammographic percent density for both CC and
MLO mammographic views. Figures 7�a� and 7�c� show the
data for CC and MLO views, respectively. Because compari-
sons were made between volumetric �USPD� and area
�MPD� measures, curve fitting was used to take this into
account in a manner similar to what has been previously
applied to MRI breast density analysis.36 Briefly, as Wei
et al. described, if we assume a simplified case with a dense
tissue spherical volume embedded in a spherical shell of
fatty tissue, the volume �i.e., USPD� would be proportional
to the projected area �MPD� to the 3 /2 power. Figures 7�b�

FIG. 5. A comparison of using every slice and every fifth slice for the USPD
calculation in vivo. The strong correlation �Pearson r=0.994� between tech-
niques justified the reduction of slices used in the USPD analysis.

FIG. 6. Boxplot showing the strong correlation �Spearman �=0.69 �p
�0.001�� between the USPD for 93 patients categorized by BI-RADS com-
positional category. The differences between all BI-RADS categories were
found to be significant using a one-way ANOVA and Scheffé posthoc analy-
sis, demonstrating the agreement of the USPD technique with the current

standard of care.
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and 7�d� show the results with this 3 /2 fit applied. Moderate
to strong positive correlations were observed between per-
cent area and percent volume for both CC and MLO views
�r2=0.75 and 0.59, respectively�. Table IV summarizes the
results.

IV. DISCUSSION

We sought to demonstrate the feasibility of employing
ultrasound tomography to estimate volumetric breast density.
As an initial proof of concept, we imaged an anthromomor-
phic breast phantom with both CURE and CT to determine if
estimated phantom inclusion volumes �integrated areas� were
comparable between the two modalities. Overall, close
agreement was observed for the large fat inclusions
�diameter=12 mm�, whereas the sound speed scan overesti-
mated the small fat inclusions with the diameter of 6 mm.
Using the current reconstruction algorithms, the resolution of
the prototype sound speed images is �4 mm. As a result,
partial averaging of the sound speed measurements was ob-
served between the smaller �6 mm� inclusions and adjacent
fibroglandular tissue. As evident in Table II, the standard
deviations and standard errors for the smaller fat inclusions
were clearly higher for sound speed than for CT scan seg-
mentation. Similarly, the standard deviation of the sound
speed integrated areas was higher at �7% of the mean, while
for CT it was �2%. Efforts are currently underway to em-
ploy algorithms using bent-ray approximations or waveform
tomography, which are expected to improve sound speed res-
olution, and consequently, improve volumetric estimations.47

Despite the current limitations in sound speed resolution,
these in vitro results were encouraging, and further analysis
was conducted to establish the feasibility of implementing
this technique in vivo.

First, the strong association �Pearson r=0.994, p�0.001�
found between segmenting the sound speed stacks for every
fifth slice and every slice in 10% of our patient population
indicated that using every fifth slice did not strongly influ-
ence the calculation of USPD for this subset of data. There-
fore, this justified using every fifth slice in subsequent analy-
ses for a reduction in workload. Because a single patient
sound speed stack can contain up to 75 sound speed tomo-
grams, using every fifth slice made the sample of �100 pa-

TABLE IV. An analysis of the relationship between volumetric ultrasound
percent density �y� from CURE sound speed tomograms and mammo-
graphic percent density �x� for CC and MLO views obtained by a volume to
area comparison model.

Mathematical equation
Correlation

coefficient �r2�

Cranio-caudal view
y=15.849+0.072x3/2 0.746
Mediolateral view
y=14.70+0.063x3/2 0.588
tients more manageable. Another reason we could legiti-
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mately use every fifth slice is the fact that the elevation beam
of our instrument was oversampled by a factor of 5 or more,
thereby ensuring little loss of information.

As an independent evaluation of our USPD approach, we
arranged USPD according to BI-RADS category. In general,
a strong increase in USPD was observed with increasing BI-
RADS breast density category. Statistically significant differ-
ences in mean USPD were found between each of the four
BI-RADS breast density categories. Most notably, the differ-
ence in USPD between BI-RADS 1 �fatty� and BI-RADS 4
�dense� was �40%. This is a critical result because it showed
that there was a substantial change in USPD between women
in the highest breast cancer risk category compared to those
in the lowest. The magnitude of difference between the
USPD for fatty versus dense-breasted patients indicates the
potential value in employing USPD to identify women with
dense breasts who are at increased breast cancer risk.

By definition, the BI-RADS categories are set to a coarse
scale, thus a wide range of USPD values for each breast
density category was observed. As expected, this was most
apparent for BI-RADS category 2 patients where �60% of
our patient population was included. Despite this limitation,
evaluating USPD with the current standard of care was nec-

(A)

(C)

FIG. 7. A comparison of the ultrasound percent density �USPD� for every fift
for 93 patients. �a� Observed data for the CC view, �b� volume to area fit, Pea
r=0.59.
essary to determine the clinical usefulness of our approach,
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and our results were strongly correlated. To more quantita-
tively evaluate USPD, we made a direct comparison of
USPD with calculated MPD.

Using a volume to area model to fit the USPD to MPD
data, moderate to strong positive correlations were observed
for both CC and MLO views. A stronger association was
observed between USPD and CC MPD view compared to
that of the MLO view. This is most likely due to the reduc-
tion of sound speed tomograms, where every fifth sound
speed tomogram was used in the USPD analysis �i.e., start-
ing at slice 5, 10, 15, etc.�. As a result, the chest wall region
was not included in the calculation of USPD.

A distinct advantage of our approach over using mam-
mography for breast density estimation is that the stacked
tomographic information provides a volumetric estimation of
breast density covering the entire breast. Other researchers
have estimated volumetric breast density through the evalu-
ation of whole-breast MRI sequences,36,37 although this
method is currently not practical because of high cost and
long exam time required for imaging. The usefulness of cali-
brating screen-film images with step wedges has also been
investigated.32 However, this approach is not ideal because it
does not account for variations in breast thickness at the

(B)

(D)

nd speed tomogram and quantitative mammographic percent density �MPD�
r=0.75, �c� observed data for the MLO view, �d� volume to area fit, Pearson
h sou
rson
peripheral tissue regions, while also utilizing ionizing radia-
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tion. Furthermore, many women are reluctant to get mammo-
grams due to the pain and anxiety associated with breast
compression.48–50 Our method of imaging does not require
compression; the patients we have imaged thus far have re-
sponded favorably about the comfort of the scan. Further,
utilizing a method that does not require compression allows
the distribution of tissue inside the breast to remain in a more
natural state during the scanning procedure.

Preliminary work has also been suggested to evaluate
breast density using dedicated breast CT,51 and tomosynthe-
sis mammography devices, which are now available that al-
low multiple sequential area estimates.52 However, employ-
ing ultrasound for breast density evaluation offers the unique
advantage of taking repeated measurements without ionizing
radiation concerns. Introducing a means of temporal breast
density monitoring would be useful to track breast density
changes in response to chemopreventative agents, hormonal
therapies, or radiation therapy. Overall, calculating USPD
through sound speed segmentation in a manner analogous to
MPD provides estimates of the volume of dense tissue as
opposed to the projected area. It is expected that breast can-
cer risk would be more strongly associated with the volumet-
ric amount of dense tissue, which we have shown to be a
feasible measurement using transmission ultrasound tomog-
raphy.

Some shortcomings in our current study include: the
coarse scale used for BI-RADS category, limited sample size
with the majority of our sample in the intermediate breast
density categories, having only one set of scans per patient,
and the current limited resolution of the CURE sound speed
images. However, most of these issues can be addressed in a
larger clinical trial that controls for menstrual cycle in pre-
menopausal women and allows repeated measurements to
determine intrapatient variability. Current efforts are under-
way to evaluate the use of bent-ray reconstructions to im-
prove sound speed resolution, which has already shown to be
promising in improving the image resolution to less than
2 mm.47 Another limitation is that the segmentation method-
ology currently employed is semiautomatic and relies on
user input to determine the number of clusters for segmenta-
tion. While a completely automated USPD segmentation
would be preferred, most assessments of breast density in-
volve user interaction �i.e., thresholding3,53 or subjective
assessment27�. Future studies could involve efforts to auto-

FIG. 8. Sound speed images of a BI-RADS category 3 �heterogeneous� brea
�legend shows sound speed in m/s�. Being able to investigate different cross
decreasing image contrast, and allows a more ready comparison to convent
mate segmentation, possibly similar to a computer-aided
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classification system where pattern recognition could be uti-
lized. Our group is currently investigating the use of auto-
mated procedures and we see this is a natural endpoint of this
line of investigation.

A comparison between CT and mammography revealed
that contrast in breast imaging is strongly related to the pres-
ence of overlying tissue obscuring structures.51 Clearly, this
is a significant disadvantage for mammography, which col-
lapses all of the volumetric information into two dimensions.
Because our ultrasound tomography technique allows us to
assess cross-sectional tomograms, we are able to evaluate the
distribution of fatty and glandular tissue on a planar level, an
option currently not possible with mammography. Further-
more, because of our volumetric data acquisition, we can
reslice coronal sound speed tomograms into different planes
using IMAGEJ, as demonstrated for a patient’s breast in Fig.
8. Here, a BI-RADS category 3 �heterogeneous� breast was
reconstructed in the sagittal plane �left to right�, and every
fifth slice is shown, with the breast sound speed �m/s� indi-
cated in the legend. Being able to investigate different cross
sections of the breast eliminates the effects that surrounding
tissue may have on decreasing image contrast. Furthermore,
by performing an average intensity summation of multiple
tomograms, creating an ultrasound tomography “mammo-
gram” is possible, allowing a more direct comparison to con-
ventional mammographic views. This may have additional
clinical utility in that it relates our sound speed images to the
mammographic views that are the current standard of care in
breast cancer screening. Further segmentation of high sound
speed regions from these different views is also possible,
without additional ionizing radiation risk concerns. Future
work will involve investigating image fusion with mammog-
raphy and evaluating temporal changes in the breast compo-
sition. Further studies will also be conducted to combine
acoustic parameters including USPD, as presented here, and
global sound speed measurements, as described previously.38

When used in concert, these parameters may demonstrate
better discriminating power in the identification of women
with dense breasts.

V. CONCLUSION

The feasibility and accuracy of using USPD to evaluate
breast density has been established through both a phantom

constructed in the sagittal plane �left to right�, with every fifth slice shown
ons of the breast eliminates the effects that surrounding tissue may have on
mammography.
st re
secti
study and in vivo investigation, suggesting that the USPD
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methods described in this work may be implemented for
breast density evaluation. The association of USPD with
mammographic percent density has been demonstrated quali-
tatively, using BI-RADS criteria and quantitatively, via digi-
tization and semiautomatic segmentation of craniocaudal and
mediolateral oblique mammograms. A positive association
between BI-RADS category and USPD was demonstrated
�Spearman �=0.69 �p�0.001��. Furthermore, comparing
USPD to calculated mammographic density yielded moder-
ate to strong positive associations for CC and MLO views
�r2=0.75 and 0.59, respectively�. These results support the
hypothesis that utilizing USPD as an analog to mammo-
graphic breast density is feasible. Overall, USPD has the
potential to provide volumetric whole-breast analysis of
breast density, which may better elucidate the relationship
between breast density and breast cancer risk.

Using ultrasound tomography for breast density evalua-
tion is advantageous for a few reasons: it is noninvasive,
nonionizing, and calculations are performed on an uncom-
pressed breast. By accurately identifying women who are at a
higher breast cancer risk due in part to increased breast den-
sity, our approach would enable preventive measures that
have the potential to monitor a quantitative variable that may
correspond to eventual reduction in breast cancer incidence.
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