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Abstract—Ultrasound computed tomography (USCT) holds 
great promise for improving the detection and management 
of breast cancer. Because they are based on the acoustic wave 
equation, waveform inversion-based reconstruction methods 
can produce images that possess improved spatial resolution 
properties over those produced by ray-based methods. How-
ever, waveform inversion methods are computationally de-
manding and have not been applied widely in USCT breast 
imaging. In this work, source encoding concepts are employed 
to develop an accelerated USCT reconstruction method that 
circumvents the large computational burden of conventional 
waveform inversion methods. This method, referred to as the 
waveform inversion with source encoding (WISE) method, en-
codes the measurement data using a random encoding vector 
and determines an estimate of the sound speed distribution by 
solving a stochastic optimization problem by use of a stochas-
tic gradient descent algorithm. Both computer simulation and 
experimental phantom studies are conducted to demonstrate 
the use of the WISE method. The results suggest that the 
WISE method maintains the high spatial resolution of wave-
form inversion methods while significantly reducing the com-
putational burden.

I. Introduction

After decades of research [1]–[4], advancements in 
hardware and computing technologies are now fa-

cilitating the clinical translation of ultrasound computed 
tomography (USCT) for breast imaging applications [2], 
[5]–[8]. USCT holds great potential for improving the 
detection and management of breast cancer because it 
provides novel acoustic tissue contrasts, is radiation- and 
breast-compression-free, and is relatively inexpensive [9], 
[10]. Several studies have reported the feasibility of USCT 
for characterizing breast tissues [2], [4]–[6], [10], [11]. Al-
though some USCT systems are capable of generating 
three images that depict the breast’s acoustic reflectivity, 

acoustic attenuation, and sound speed distributions, this 
study will focus on the reconstruction of the sound speed 
distribution.

A variety of USCT imaging systems have been devel-
oped for breast sound speed imaging [5], [7], [10], [12]–[15]. 
In a typical USCT experiment, acoustic pulses that are 
generated by different transducers are employed, in turn, 
to insonify the breast. The resulting wavefield data are 
measured by an array of ultrasonic transducers that are 
located outside of the breast. Here and throughout the 
manuscript, a transducer that produces an acoustic pulse 
will be referred to as an emitter; the transducers that 
receive the resulting wavefield data will be referred to as 
receivers. From the collection of recorded wavefield data, 
an image reconstruction method is utilized to estimate the 
sound speed distribution within the breast [5], [7], [10].

The majority of USCT image reconstruction methods 
for breast imaging investigated to date have been based 
on approximations to the acoustic wave equation [12], 
[16]–[24]. A relatively popular class of methods is based 
on geometrical acoustics. Such methods are commonly re-
ferred to as ray-based methods. These methods involve 
two steps. First, time-of-flight (TOF) data corresponding 
to each emitter-receiver pair are estimated [25]. Under a 
geometrical acoustics approximation, the TOF data are 
related to the sound speed distribution via an integral ge-
ometry, or ray-based, imaging model [16], [26]. Second, by 
use of the measured TOF data and the ray-based imaging 
model, a reconstruction algorithm is employed to estimate 
the sound speed distribution. Although ray-based meth-
ods can be computationally efficient, the spatial resolu-
tion of the images they produce is limited due to the fact 
that diffraction effects are not modeled [23], [27]. This is 
undesirable for breast imaging applications, in which the 
ability to resolve fine features (e.g., tumor spiculations) is 
important for distinguishing healthy from diseased tissues.

USCT reconstruction methods based on the acoustic 
wave equation, also known as full-wave inverse scattering 
or waveform inversion methods, have also been explored 
for a variety of applications including medical imaging 
[12], [22], [23], [28] and geophysics [29]–[31]. Because they 
account for higher-order diffraction effects, waveform in-
version methods can produce images that possess high-
er spatial resolution than those produced by ray-based 
methods [23], [28]. However, conventional waveform inver-
sion methods are iterative in nature and require the wave 
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equation to be solved numerically a large number of times 
at each iteration. Consequently, such methods can be ex-
tremely computationally burdensome. For special geom-
etries [12], [32], efficient numerical wave equation solvers 
have been reported. However, apart from special cases, the 
large computational burden of waveform inversion meth-
ods has hindered their widespread application.

A natural way to reduce the computational complexity 
of the reconstruction problem is to reformulate it in a way 
that permits a reduction in the number of times the wave 
equation needs to be solved. In the geophysics literature, 
source encoding methods have been proposed to achieve 
this [29]–[31]. When source encoding is employed, at each 
iteration of a prescribed reconstruction algorithm, all of 
the acoustic pulses produced by the emitters are combined 
(or encoded) by use of a random encoding vector. The 
measured wavefield data are combined in the same way. 
As a result, the wave equation may need to be solved as 
few as twice at each algorithm iteration. In conventional 
waveform inversion methods, this number would be equal 
to twice the number of emitters employed. Although con-
ventional waveform inversion methods may require fewer 
algorithm iterations to obtain a specified image accuracy 
compared with source encoded methods, as demonstrated 
later, the latter can greatly reduce the overall number of 
times the wave equation needs to be solved.

In this study, a waveform inversion with source encod-
ing (WISE) method for USCT sound speed reconstruction 
is developed and investigated for breast imaging with a 
circular transducer array. The WISE method determines 
an estimate of the sound speed distribution by solving 
a stochastic optimization problem by use of a stochastic 
gradient descent algorithm [30], [33]. Unlike previously 
studied waveform inversion methods that were based on 
the Helmholtz equation [22], [23], the WISE method is for-
mulated by use of the time-domain acoustic wave equation 
[34]–[36] and uses broad-band measurements. The wave 
equation is solved by use of a computationally efficient 
k-space method that is accelerated by use of graphics pro-
cessing units (GPUs). To mitigate the interference of the 
emitter on its neighboring receivers, a heuristic data re-
placement strategy is proposed. The method is validated 
in computer simulation studies that include modeling er-
rors and other physical factors. The practical applicability 
of the method is further demonstrated in studies involving 
experimental breast phantom data.

The remainder of the paper is organized as follows. In 
Section II, USCT imaging models in their continuous and 
discrete forms are reviewed. A conventional waveform in-
version method and the WISE method for sound speed re-
construction are formulated in Section III. The computer 
simulation studies and corresponding numerical results are 
presented in Sections IV and V, respectively. In Section 
VI, the WISE method is further validated in experimental 
breast phantom studies. Finally, the paper concludes with 
a discussion in Section VII.

II. Background: USCT Imaging Models

In this section, imaging models that provide the ba-
sis for image reconstruction in waveform inversion-based 
USCT are reviewed.

A. USCT Imaging Model in Its Continuous Form

Although a digital imaging system is properly described 
as a continuous-to-discrete (C-D) mapping (chapter 7 in 
[37]), for simplicity, a USCT imaging system is initially 
described in its continuous form below.

In USCT breast imaging, a sequence of acoustic pulses 
is transmitted through the breast. We denote each acous-
tic pulse by s tm( , ) ( [0, ))2 3r ∈ × ∞L R , where each pulse is 
indexed by an integer m for m = 0, 1, ..., M − 1 with M 
denoting the total number of acoustic pulses. Although it 
is spatially localized at the emitter location, each acoustic 
pulse can be expressed as a function of space and time. 
When the mth pulse propagates through the breast, it 
generates a pressure wavefield distribution denoted by 
p tm( , ) ( [0, ))2 3r ∈ × ∞L R . If acoustic absorption and mass 
density variations are negligible, pm(r,t) in an unbounded 
medium satisfies the acoustic wave equation [38]:

	 ∇ −
∂
∂

−2
2

2

2( , )
1
( )

( , ) = 4 ( , ),p t
c t

p t s tm m mr
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where c(r) is the sought-after sound speed distribution. 
Eq. (1) can be expressed in operator form as

	 p t s tm m( , ) = ( , ),r rH c 	 (2)

where the linear operator H c : ( [0, ))2 3L R × ∞  � 
L R2 3( [0, ))× ∞  denotes the action of the wave equation 
and is independent of the index of m. The superscript c 
indicates the dependence of H c on c(r).

Consider that pm(r,t) is recorded outside of the object 
for r ∈ Ωm and t ∈ [0,T], where Ωm ⊂ R 3 denotes a con-
tinuous measurement aperture. In this case, when discrete 
sampling effects are neglected, the imaging model can be 
described as a continuous-to-continuous mapping as

	 g t s t m Mm m m( , ) = ( , ), = 0,1, , 1,r rM H c for � − 	 (3)

where g t Tm m( , ) ( [0, ])2r ∈ ×L Ω  denotes the measured data 
function and the operator Mm is the restriction of H c to 
Ωm × [0, T ]. The m-dependent operator Mm allows (3) to 
describe USCT imaging systems in which the measure-
ment aperture varies with emitter location. Here and 
throughout the manuscript, we will refer to the process of 
firing one acoustic pulse and acquiring the corresponding 
wavefield data as one data acquisition indexed by m. The 
USCT reconstruction problem in its continuous form is to 
estimate the sound speed distribution c(r) by use of (3) 
and the data functions { ( , )} =0

1g tm m
Mr − .
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B. USCT Imaging Model in Its Discrete Forms

A digital imaging system is accurately described by a 
continuous-to-discrete (C-D) imaging model, which is typ-
ically approximated in practice by a discrete-to-discrete 
(D-D) imaging model to facilitate the application of itera-
tive image reconstruction algorithms. A C-D description 
of the USCT imaging system is provided in Appendix A. 
Below, a D-D imaging model for waveform-based USCT 
is presented. This imaging model will be employed subse-
quently in the development of the WISE method in Sec-
tion III.

Construction of a D-D imaging model requires the in-
troduction of finite-dimensional approximate representa-
tions of the functions c(r) and sm(r,t), which will be de-
noted by the vectors c ∈ RN and sm NL∈ R . Here, N and 
L denote the number of spatial and temporal samples, 
respectively, employed by the numerical wave equation 
solver. In waveform-based USCT, the way in which c(r) 
and sm(r,t) are discretized to form c and sm is dictated by 
the numerical method employed to solve the acoustic wave 
equation. In this study, we employ a pseudospectral k-
space method [34]–[36]. Accordingly, c(r) and sm(r,t) are 
sampled on Cartesian grid points as

	
[ ] = ( ), [ ] = ( , ),

= 0,1, , 1
= 0,1, ,

c r s rn n m nL l m n
tc s l

n N
l L

and

for

+

−
−

∆

�

� 11
,

	 (4)

where Δt denotes the temporal sampling interval and rn 
denotes the location of the nth point.

For a given c and sm, the pseudospectral k-space meth-
od can be described in operator form as

	 p H sm m
a c= ,	 (5)

where the matrix Hc is of dimension NL × NL and repre-
sents a discrete approximation of the wave operator H c 
defined in (2), and the vector pma  represents the estimated 
pressure data at the grid point locations and has the same 
dimension as sm. The superscript a indicates that these 
values are approximate, i.e., [ ] ( , )p rm nL l m n

tp la
+ ≈ ∆ . We re-

fer the readers to [34]–[36] for additional details regarding 
the pseudospectral k-space method.

Because the pseudospectral k-space method yields sam-
pled values of the pressure data on a Cartesian grid, a 
sampling matrix Mm is introduced to model the USCT 
data acquisition process as

	 g M p M H sm m m m m
a a c= .≡ 	 (6)

Here, the N recL × NL sampling matrix Mm extracts the 
pressure data corresponding to the receiver locations on 
the measurement aperture Ωm, with N rec denoting the 
number of receivers. The vector gma  denotes the predicted 
data that approximates the true measurements. In prin-
ciple, Mm can be constructed to incorporate transducer 

characteristics, such as finite aperture size and temporal 
delays. For simplicity, we assume that the transducers are 
point-like in this study. When the receiver and grid point 
locations do not coincide, an interpolation method is re-
quired. As an example, when a nearest-neighbor interpola-
tion method is employed, the elements of Mm are defined 
as

	 [ ] = 1, = ( ),
0, ,,Mm L l nL l

m
n

n n
rec

for
otherwise

rec

+ + { I 	 (7)

where [ ] ,Mm n L l nL lrec + +  denotes the element of Mm at the 
(nrecL + l)th row and the (nL + l)th column, and Im n( )rec  
denotes the index of the grid point that is closest to 
r(m,nrec). Here, r(m,nrec) denotes the location of the nrecth 
receiver in the mth data acquisition. Eq. (6) represents the 
D-D imaging model that will be employed in the remain-
der of this study.

III. Waveform Inversion With Source  
Encoding for USCT

A. Sequential Waveform Inversion in Its Discrete Form

A conventional waveform inversion method that does 
not utilize source encoding will be employed as a reference 
for the developed WISE method and is briefly described 
below. Like other conventional approaches, this method 
sequentially processes the data acquisitions {gm} (in an 
arbitrary order) for m = 0, 1, ..., M − 1 at each iteration 
of the associated algorithm. As such, we will refer to the 
conventional method as a sequential waveform inversion 
method.

A sequential waveform inversion method can be formu-
lated as a nonlinear numerical optimization problem:

	 ˆ arg minc c c
c

= { ( ) ( )},F R+ β 	 (8)

where F( )c , R( )c , and β denote the data fidelity term, the 
penalty term, and the regularization parameter, respec-
tively. The data fidelity term F( )c  is defined as a sum of 
squared �2 norms of the data residuals corresponding to 
all data acquisitions as

	 F( ) =
1
2 ,

=0

1
2c g M H s

m

M

m m m

−

∑ −� �c 	 (9)

where gm N L∈ R rec
 denotes the measured data vector at 

the mth data acquisition. The choice of the penalty term 
will be addressed in Section IV.

The gradient of F( )c  with respect to c, denoted by J, 
will be computed by discretizing an expression for the 
Fréchet derivative that is derived assuming a continuous 
form of (9). The Fréchet derivative is described in Appen-
dix B. Namely, the gradient is approximated as
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where Jm denotes the gradient of � �g M H sm m m− c /2 2 
with respect to c and the vector qma  contains samples that 
approximate adjoint wavefield qm(r,t) that satisfies (34) in 
Appendix B. By use of the pseudospectral k-space meth-
od, qma  can be calculated as

	 q Hm m
a c=

1
4 ,π τ 	 (11)

where

	 [ ] =
[ ] , ,
0,

1( ) ( )τm nL l
m m n L L l mm

n
+

+ −− ∈




−g ga if
otherwise.

I N
	 (12)

Here, Nm m
ec ec ecn n n N= { : ( ), = 0,1, , 1}I r r r� − , and 

Im
−1 denotes the inverse mapping of Im. 
Given the explicit form of J in (10), a variety of opti-

mization algorithms can be employed to solve (8) [39]. 
Algorithm 1 describes a gradient descent-based sequential 
waveform inversion method. Note that at every algorith-
mic iteration, the sequential waveform inversion method 
updates the sound speed estimate only once using the gra-
dient J accumulated over all Jm for m = 0, 1, ..., M − 1. 
This is unlike the Kaczmarz method—also known as the 
algebraic reconstruction technique [16], [19], [40]—that 
updates the sound speed estimate multiple times in one 
algorithmic iteration. In Line 10 of Algorithm 1, JR de-
notes the gradient of R( )c  with respect to c.

Algorithm 1: Gradient descent-based sequential wave-
form inversion.

Input: { } { } (0)g s cm m, ,
Output: ĉ 

•	1: k ← 0 {k is the number of algorithm iteration.}
•	2: while stopping criterion is not satisfied do
•	3:   k ← k + 1 
•	4:  J ← 0
•	5:   for m := 0 to M − 1 do
•	6:    p H sm m

a c←  {m is the index of the emitter.}
•	7:    q Hm m

a c← τ  {τm is calculated via (12).} 
•	8:    J ← J + Jm {Jm is calculated via (10).}
•	9:   end for
•	10:   J J J← + β R 
•	11:  D etermine step size λ via a line search
•	12:   c c J( ) ( 1)k k← −− λ
•	13: end while
•	14: ĉ c= ( )k

In Algorithm 1, Hc is the most computationally bur-
densome operator, representing one run of the wave equa-

tion solver. Note that it appears in Lines 6, 7, and 11. 
Because Lines 6 and 7 have to be executed M times to 
process all of the data acquisitions and the line search 
method must pass through all M emitters at least once, 
the wave equation solver has to be executed at least 3M 
times at each algorithm iteration. The line search in Line 
11 searches for a step size along the direction of −J so 
that the cost function is reduced by use of a classic trial-
and-error approach [39]. Note that, in general, the line 
search will require more than M applications of Hc, so 
3M represents a lower bound on the total number of wave 
equation solver runs per iteration.

B. Stochastic Optimization-Based WISE

To alleviate the large computational burden presented 
by sequential waveform inversion methods (e.g., Algorithm 
1), a source encoding method has been proposed [22], [29], 
[41]. This method has been formulated as a stochastic op-
timization problem and solved by various stochastic gra-
dient-based algorithms [30], [31]. In this section, we adapt 
the stochastic optimization-based formulation in [30] to 
find a solution of (8). 

Algorithm 2. WISE Method.
Input: { } { } (0)g s cm m, ,  
Output: ĉ

•	1: k ← 0 {k is the number of algorithm iteration.}
•	2: while stopping criterion is not satisfied do
•	3:    k ← k + 1
•	4:  D raw elements of w from independent and identi-
cal Rademacher distribution. 
•	5:  p H sw c w←  {sw is calculated via (14).}
•	6:  q Hw c w← τ  {τw is calculated via (17).}
•	7:   J J J← +w Rβ  {Jw is calculated via (16).}
•	8:  D etermine step size λ by use of line search
•	9: c c J( ) ( 1)k k← −− λ  
•	10: end while
•	11: ĉ c= ( )k

The WISE method seeks to minimize the same cost 
function as the sequential waveform inversion method, 
namely (8). However, to accomplish this, the data fidelity 
term in (9) is reformulated as the expectation of a random 
quantity as [29]–[31], [33], [41], [42]

	 Fs( ) =
1
2 ,2c E g MH sw � �w c w−{ } 	 (13)

where Ew denotes the expectation operator with respect 
to the random source encoding vector w ∈ RM, M M≡ m 
is the sampling matrix that is assumed to be identical for 
m = 0, 1, ..., M − 1, and gw and sw denote the w-encoded 
data and source vectors, defined as

	 g w g s w sw wand= [ ] , = [ ] ,
=0

1

=0

1

m

M

m m
m

M

m m

− −

∑ ∑ 	 (14)

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on August 13,2021 at 13:57:03 UTC from IEEE Xplore.  Restrictions apply. 



wang et al.: waveform inversion with source encoding 479

respectively. It has been demonstrated that (9) and (13) 
are mathematically equivalent when w possesses a zero 
mean and an identity covariance matrix [30], [33], [42]. In 
this case, the optimization problem whose solution speci-
fies the sound speed estimate can be re-expressed in a 
stochastic framework as

	 ˆ arg minc E g MH s cw=
1
2 ( ),2

c
� �w c w−{ } + βR 	 (15)

which we refer to as the WISE method. An implemen-
tation of the WISE method that utilizes the stochastic 
gradient descent algorithm is summarized in Algorithm 2.

In Algorithm 2, the wave equation solver needs to be 
run one time in each of Lines 5 and 6. In the line search 
to determine the step size in Line 8, the wave equation 
solver needs to be run at least once, but in general will 
require a small number of additional runs, just as in Al-
gorithm 1. Accordingly, the lower bound on the number 
of required wave equation solver runs per iteration is 3, as 
opposed to (3M) for the conventional sequential waveform 
inversion method described by Algorithm 1. As demon-
strated in geophysics applications [29], [31], [41] and the 
breast imaging studies below, the WISE method provides 
a substantial reduction in reconstruction times over use 
of the standard sequential waveform inversion method. In 
Line 7 of Algorithm 2, Jw can be calculated analogously 
to (10) as

	[ ]
1

[ ]
[ ]

[ ] 2[ ] [ ]
3

=1

2

( )
1J

c
q

p p pw w
w w w

n
n l

L

nL L l
nL l nL l nL≈

− +
−

+ −
+ − +∑ ++ +l 1 ,

∆t
	

		  (16)

where p H sw c w=  and q Hw c w= τ  with τ w ∈ RNL calcu-
lated by

	 [ ] = [ ] , ,
0,

.1( ) ( )τ w
w w if

otherwise
nL l

n L L l n
+

+ −− ∈




−Mp g I N 	 (17)

Here, we drop the subscript m of both I −1( )n  and N be-
cause we assume M to be identical for all data acquisi-
tions. Various probability density functions have been pro-
posed to describe the source encoding vector w [29], [31], 
[41]. In this study, we employed a Rademacher distribu-
tion as suggested by [29], in which case each element of w 
had a 50% chance of being either +1 or −1.

IV. Description of Computer Simulation Studies

Two-dimensional computer simulation studies were 
conducted to validate the WISE method for breast sound 
speed imaging and demonstrate its computational ad-
vantage over the standard sequential waveform inversion 
method.

A. Measurement Geometry

A circular measurement geometry was chosen to emu-
late a previously reported USCT breast imaging system 
[10], [23], [43]. As depicted in Fig. 1, 256 ultrasonic trans-
ducers were uniformly distributed on a ring of radius 
110  mm. The generation of one USCT data set consisted 
of M = 256 sequential data acquisitions. In each data ac-
quisition, one emitter produced an acoustic pulse. The 
acoustic pulse was numerically propagated through the 
breast phantom and the resulting wavefield data were re-
corded by all transducers in the array as described below. 
Note that the location of the emitter in every data ac-
quisition was different from those in other acquisitions, 
whereas the locations of receivers were identical for all 
acquisitions.

B. Numerical Breast Phantom

A numerical breast phantom of diameter 98 mm was 
employed. The phantom was composed of 8 structures 
representing adipose tissues, parenchymal breast tissues, 
cysts, benign tumors, and malignant tumors, as shown in 
Fig. 2. For simplicity, the acoustic attenuation of all tis-
sues was described by a power law with a fixed exponent 
y = 1.5 [44]. The corresponding sound speed and the at-
tenuation slope values are listed in Table I [44]–[46]. Both 
the sound speed and the attenuation slope distributions 
in Fig. 2 were sampled on a uniform Cartesian grid with 
spacing Δs = 0.25  mm. The finest structure [indexed by 7 
in Fig. 2(a)] was of diameter 3.75  mm.

C. Simulation of the Measurement Data

1) First-Order Numerical Wave Equation Solver: Acous-
tic wave propagation in acoustically absorbing media was 
modeled by three coupled first-order partial differential 
equations [47]:

Fig. 1. Schematic of a USCT system with a circular transducer array 
whose elements are indexed from 0 to 255. It shows the first data acquisi-
tion, where element 0 (in red) is emitting an acoustic pulse, whereas all 
256 elements are receiving signals. The region of interest (ROI) is shaded 
in gray, and the dashed square box represents the physical dimensions 
(128 × 128  mm2) of all reconstructed images.
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where u(r,t), p(r,t), and ρ(r) denote the acoustic particle 
velocity, the acoustic pressure, and the acoustic density, 
respectively. The functions τ(r) and η(r) describe acoustic 
absorption and dispersion during the wave propagation 
[47]:

	 τ α η α π( ) = 2 ( ) ( ) , ( ) = 2 ( ) ( ) ( 2),0 0
1

0 0r r r r r r− −c c yy y tan / 			
		  (19)

where α0(r) and y are the attenuation slope and the power 
law exponent, respectively. When the medium is assumed 
to be lossless [i.e., α0(r) = 0], it can be shown that (18) is 
equivalent to (1).

Based on (18), a pseudospectral k-space method was 
employed to simulate acoustic pressure data [36], [47]. 
This method was implemented by use of a first-order nu-
merical scheme on GPU hardware. The calculation do-
main was of size 512 × 512 mm2, sampled on a 2048 × 
2048 uniform Cartesian grid of spacing Δs = 0.25  mm. A 
nearest-neighbor interpolation was employed to place all 

transducers on the grid points. On a platform consisting 
of dual quad-core CPUs with a 3.30 GHz clock speed, 
64  GB of random-access memory, and a single NVIDIA 
Tesla K20 GPU, the first-order pseudospectral k-space 
method required approximately 108 s to complete one for-
ward simulation.

2) Acoustic Excitation Pulse: The excitation pulse em-
ployed in this study was assumed to be spatially localized 
at the emitter location while temporally it was a fc = 
0.8  MHz sinusoidal function tapered by a Gaussian kernel 
with standard deviation σ = 0.5 µ s, i.e.,
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where tc = 3.2 µ s. The temporal profile and the amplitude 
frequency spectrum of the excitation pulse are plotted in 
Fig. 3(a) and (b), respectively. The excitation pulse con-
tained approximately 3  cycles.

3) Generation of Non-Attenuated and Attenuated Noise-
Free Data: For every data acquisition (indexed by m), the 
first-order pseudospectral k-space method was run for 
3600 time steps with a time interval Δt = 0.05 µ s (corre-
sponding to a 20  MHz sampling rate). Downsampling the 
recorded data by taking every other time sample resulted 
in a data vector gm that was effectively sampled at 
10  MHz and was of dimensions ML with M = 256 and L 
= 1800. The data vector at the zeroth data acquisition, g0, 
is displayed as a 2-D image in Fig. 4(a). This undersam-
pling procedure was introduced to avoid inverse crime [48] 
so that the data generation and the image reconstruction 
employed different numerical discretization schemes. Re-
peating the calculation for m = 0, 1, ..., 255, we obtained 
a collection { }gm  of data vectors that together represented 
one complete data set. Using the absorption phantom de-
scribed in Section IV-B, a complete attenuated data set 
was computed. An idealized, non-attenuated data set was 
also computed by setting α0(r) = 0.

Fig. 2. (a) Sound speed map (mm∙µs−1) and (b) acoustic attenuation 
slope map [dB∙(MHz)−y∙cm−1] of the numerical breast phantom.

TABLE I. Parameters of the Numerical Breast  
Phantom [44]–[46]. 

Structure 
index Tissue type

Sound speed 
(mm∙µs−1)

Slope of attenuation 
[dB∙(MHz)−y∙cm−1]

0 Adipose 1.47 0.60
1 Parenchyma 1.51 0.75
2 Benign tumor 1.47 0.60
3 Benign tumor 1.47 0.60
4 Cyst 1.53 0.00217
5 Malignant tumor 1.565 0.57
6 Malignant tumor 1.565 0.57
7 Malignant tumor 1.57 0.57

Fig. 3. (a) Normalized temporal profile and (b) amplitude spectrum of 
the excitation pulse employed in the computer simulation studies. The 
dashed line in (b) marks the center frequency of excitation pulse at 
0.82  MHz.
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4) Generation of Incomplete Data: An incomplete data 
set in this study corresponds to one in which only N rec 
receivers located on the opposite side of the emitter re-
cord the pressure wavefield, with N rec < M. Taking the 
zeroth data acquisition as an example (Fig. 1), only N rec 
= 100 receivers, indexed from 78 to 177, record the wave-
field, whereas other receivers record either unreliable or 
no measurements. Incomplete data sets formed in this way 
can emulate two practical scenarios: (1) Signals recorded 
by receivers near the emitter are unreliable and therefore 
discarded [23], and (2) an arc-shaped transducer array is 
employed that rotates with the emitter [13], [14], [49].

Specifically, incomplete data sets were generated as

	[ ] = [ ] ,
= 0,1, , 1

= 0,1, ,( )g gm n L l m n L lm

m M

n
incpl

recrec rec for+ +

−
J

�

� NN rec − 1
,		

		  (21)

where gmincpl is the incomplete mth data acquisition, which 
is of dimensions N recL, with N rec < M. The index map 
Jm mN: {0,1, , 1}� �rec good− M  is defined as

	 Jm n m n
M N

M( ) = 2 ,rec rec
rec

+ +
−( )mod 	 (22)

where (m′ mod M) calculates the remainder of m′ divided 
by M, and the index set Mmgood collects indices of transduc-
ers that reliably record data at the mth data acquisition 
and is defined as
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k M k m M N m M N

good

rec rec/ /
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{ | [ ( ) 2, ( ) 2)}.mod ∈ + − + +
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Here, for simplicity, we assume that M and Nrec are even 
numbers. In this study, we empirically set Nrec = 100 so 
that the object can be fully covered by the fan region as 
shown in Fig. 1.

5) Generation of Noisy Data: An additive Gaussian 
white noise model was employed to simulate electronic 
measurement noise as

	 � �g g nm m= ,+ 	 (24)

where �gm and �n are the noisy data vector and the Gauss-
ian white noise vector, respectively. In this study, the 
maximum value of the pressure received by the 128th 
transducer at the zeroth data acquisition with a homoge-
neous medium (water tank) was chosen as a reference sig-
nal amplitude. The noise standard deviation was set to be 
5% of this value. An example of a simulated noiseless and 
noisy data acquisition is shown Fig. 4.

D. Image Reconstruction

1) Second-Order Pseudospectral k-Space Method: In the 
reconstruction methods described below, the action of the 
operator Hc (5) was computed by solving (1) by use of 
a second-order pseudospectral k-space method. This was 
implemented using GPUs. The calculation domain was of 
size 512 × 512 mm2, sampled on a 1024 × 1024 uniform 
Cartesian grid of spacing Δs = 0.5  mm for reconstruction. 
On a platform consisting of dual octa-core CPUs with a 
2.00  GHz clock speed, 125  GB RAM, and a single NVID-
IA Tesla K20C GPU, the second-order k-space method 
required approximately 7  s to complete one forward simu-
lation.

2) Sequential Waveform Inversion: To serve as a refer-
ence for the WISE method, we implemented the sequen-
tial waveform inversion method described in Algorithm 
1. A uniform sound speed distribution was employed as 
the initial guess, which corresponded to the known back-
ground value of 1.5  mm/µs. The object was contained 
in a square region of interest (ROI) of dimension 128 × 
128  mm2 (Fig. 1), which was covered by 256 × 256  pixels.

3) WISE Method: We implemented the WISE method 
by use of Algorithm 2. Two types of penalties were em-
ployed in this study: a quadratic penalty expressed as
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Fig. 4. Computer-simulated (a) noise-free and (b) noisy data vectors at the zeroth data acquisition. (c) Profiles of the pressure received by the 128th 
transducer. The grayscale window for (a) and (b) is [−45, 0]  dB.
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where Nx and Ny denote the number of grid points along 
the x and y directions, respectively, and a total variation 
(TV) penalty, defined as [52], [53]

	
RTV( ) =

([ ] [ ] ) ([ ] [ ]1
2

( 1)

c

c c c c
j i

jNx i jNx i jNx i j Nx i∑∑ + − + −+ + − + − +ε )) ,2 	

		  (26)

where ε is a small number introduced to avoid dividing 
by 0 in the gradient calculation. In this study, we empiri-
cally selected ε = 10−12. This value was fixed because we 
observed that it had a minor impact on the reconstructed 
images compared with the impact of β. The use of this pa-
rameter can be avoided when advanced optimization algo-
rithms are employed [54], [55]. As in the sequential wave-
form inversion case, it was assumed that the background 
sound speed was known and the object was contained in a 
square ROI of dimension 128 × 128 mm2 (Fig. 1), which 
corresponded to 256 × 256 pixels. The regularization pa-
rameters corresponding to the quadratic penalty and the 
TV penalty will be denoted by βQ and βTV, respectively. 
Optimal regularization parameter values should ultimate-
ly be identified by use of task-based measures of image 
quality [37]. In this preliminary study, we investigated the 
impact of βQ and βTV on the reconstructed images by 
sweeping their values over a wide range.

4) Reconstruction From Incomplete Data: Because the 
WISE method requires Mm to be identical for all m’s, 
image reconstruction from incomplete data remains chal-
lenging [30], [33], [42]. In this study, two data completion 
strategies were investigated [30], [33], [42] to synthesize a 
complete data set, to which the WISE method could be 
effectively applied. 

One strategy was to fill the missing data with pressure 
corresponding to a homogeneous medium as
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for mrec = 0, 1, ..., M − 1, where gmh ML∈ R , gm N Lincpl rec
∈ R , 

and gm
combH ML∈ R  denote the computer-simulated (with a 

homogeneous medium), the measured incomplete, and the 
combined complete data vectors at the mth data acquisi-
tion, respectively. The mapping 
Jm m N− −1 : {0,1, , 1}M good rec� �  denotes the inverse op-
erator of Jm as in (28), see above. This data completion 

strategy is based on the assumption that the back-scatter 
from breast tissue in an appropriately sound speed-
matched water bath is weak. This assumption suggests 
that the missing measurements can be replaced by the 
corresponding pressure data that would have been pro-
duced in the absence of the object.

The second, more crude, data completion strategy was 
to simply fill the missing data with zeros, i.e.,
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where gm
comb0 denotes the data completed with the second 

strategy.

5) Bent-Ray Image Reconstruction: A bent-ray method 
was also employed to reconstruct images. Details regard-
ing the TOF estimation and algorithm implementation 
are provided in Appendix C.

V. Computer Simulation Results

A. Images Reconstructed From Idealized Data

The images reconstructed from the noise-free, non-at-
tenuated data by use of the WISE method with 199 itera-
tions and the sequential waveform inversion method with 
43 iterations are shown in Fig. 5(a) and (b). As expected 
[23], [56], both images are more accurate and possess higher 
spatial resolution than the one reconstructed by use of the 
bent-ray reconstruction algorithm displayed in Fig. 5(c). 
Profiles through the reconstructed images are displayed 
in Fig. 6. The images shown in Fig. 5(a) and (b) possess 
similar accuracies as measured by their root-mean-square 
errors (RMSEs), namely, 1.08 × 10−3 for the former and 
1.19 × 10−3 for the latter. The RMSE was computed as 
the Euclidean distance between the reconstructed image 
and the sound speed phantom vector c, averaged by the 
256 × 256 pixels of the ROI sketched in Fig. 1. However, 
the reconstruction of Fig. 5(a) required only about 1.7% 
of the computational time required to reconstruct Fig. 
5(b), namely, 1.4  hours for the former and 81.4  hours 
for the latter. This is because the WISE method required 
only 1018 wave equation solver runs, which is significantly 
less than the 57 088 wave equation solver runs required by 
the sequential waveform inversion method. With a similar 
number of wave equation solver runs (e.g., 1024), one can 
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complete only a single algorithm iteration by use of the 
sequential waveform inversion method. The corresponding 
image, shown in Fig. 5(d), lacks quantitative accuracy as 
well as qualitative value for identifying features. The re-
sults suggest that the WISE method maintains the advan-
tages of the sequential waveform inversion method while 
significantly reducing the computational time.

B. Convergence of the WISE Method

Images reconstructed from noise-free, non-attenuated, 
data by use of the WISE method contain radial streak 
artifacts when the algorithm iteration number is less than 
100, as shown in Figs. 7(a) to (c). Profiles through these 
images are displayed in Fig. 8. The streak artifacts are 
likely caused by crosstalk introduced during the source 
encoding procedure [31], [41]. However, these artifacts are 
effectively mitigated after more iterations as demonstrat-
ed by the image reconstructed after the 199th iteration 
in Fig. 5(a) and its profile in Fig. 6. The quantitative ac-
curacy of the reconstructed images is improved with more 
iterations as shown in Fig. 8.

Fig. 9(a) reveals that the WISE method requires a larg-
er number of algorithm iterations than does the sequential 
waveform inversion method to achieve the same RMSE. 

The RMSE of the images reconstructed by use of the 
WISE method appears to oscillate around 1.0 × 10−3 after 
the first 100 iterations, whereas the sequential waveform 
inversion method can achieve a lower RMSE. However, as 
shown previously in Fig. 5(a) and the corresponding pro-
file in Fig. 6, after additional iterations the image recon-
structed by use of the WISE method achieves a high ac-
curacy. Moreover, to achieve the same accuracy as the 
sequential waveform inversion method, the WISE method 
requires a computation time that is reduced by approxi-
mately 2  orders of magnitude, as suggested by Fig. 9(b). 
We also plotted the cost function value against the num-
ber of iterations in Fig. 9(c). Note that for the WISE 
method, the cost function value was approximated by the 

current realization of g MH sw c w /−
2

2. These plots sug-
gest that, in this particular case, the WISE method ap-
pears to approximately converge after 200 iterations. For 
example, the images reconstructed after 199 [Fig. 5(a)] 
and 250 [Fig. 7(d)] iterations are nearly identical.

C. Images Reconstructed From Non-Attenuated  
Data Containing Noise

Images reconstructed by use of the WISE method with 
a quadratic penalty and the WISE method with a TV 
penalty from noisy, non-attenuated data are presented in 
Fig. 10. All images were obtained after 1024 algorithm 
iterations. The WISE method with a quadratic penalty ef-
fectively mitigates image noise as shown in Figs. 10(a) to 
(c), at the expense of image resolution, as expected. Fig. 
10(d) shows an image reconstructed by use of the WISE 
method with a TV penalty. The image appears to possess 
a similar resolution but a lower noise level than the image 
in Fig. 10(b) that was reconstructed by use of the WISE 
method with a quadratic penalty. We also compared the 
convergence rates of the WISE method and the sequential 
waveform inversion methods when both utilize a TV pen-
alty and the same regularization parameter. As shown in 
Fig. 11, the convergence properties of the penalized meth-

Fig. 5. Images reconstructed by use of (a) the WISE method after the 
199th iteration (1018  runs of the wave equation solver), (b) the sequen-
tial waveform inversion algorithm after the 43rd iteration (57 088  runs 
of the wave equation solver), (c) the bent-ray model-based sound speed 
reconstruction method, and (d) the sequential waveform inversion algo-
rithm after the first iteration (1024  runs of the wave equation solver) 
from the noise-free non-attenuated data. The grayscale window is [1.46, 
1.58]  mm/µs.

Fig. 6. Profiles at y = 6.5  mm of the images reconstructed by use of the 
bent-ray TOF image reconstruction method and the WISE method from 
the noise-free non-attenuated data.
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ods follow similar trends as the un-penalized methods, 
which were discussed above and shown in Fig. 9. Even 
though it required a larger number of algorithm iterations, 
the WISE method reduced the computation time by ap-
proximately 2  orders of magnitude as compared with the 
sequential waveform inversion method.

D. Images Reconstructed From Acoustically  
Attenuated Data

Our current implementation of the WISE method as-
sumes an absorption-free acoustic medium. This assump-

tion can be strongly violated in practice. To investigate 
the robustness of the WISE method to model errors as-
sociated with ignoring medium acoustic absorption, we 
applied the algorithm to the acoustically attenuated data 
that were produced as described in Section IV-C. As 
shown in Fig. 12, when acoustic absorption is considered, 
the amplitude of the measured pressure is attenuated by 
approximately a factor of 2. The wavefront [Fig. 12(a)] 
remains very similar to that when medium absorption is 
ignored [Fig. 4(a)]. Medium absorption has the largest im-
pact on the pressure data received by transducers located 
opposite the emitter as shown in Fig. 12(b). The shape of 
the pulse profile remains very similar as shown in Figs. 
12(c) and (d), suggesting that waveform dispersion may 
be less critical than amplitude attenuation in image recon-
struction for this phantom.

Images reconstructed by use of the WISE method with 
a TV penalty from noise-free and noisy attenuated data 
are shown in Figs. 13(a) and (b). Image profiles are shown 
in Fig. 13(c). Although these images contain certain arti-
facts that were not produced in the idealized data studies, 
most object structures remain readily identified. These re-
sults suggest that the WISE method with a TV penalty 
can tolerate data inconsistencies associated with neglect-

Fig. 7. Images reconstructed by use of the WISE method after (a) the 
20th, (b) the 50th, (c) the 100th, and (d) the 250th iteration from the 
noise-free, non-attenuated data set. The grayscale window is [1.46, 
1.58]  mm/µs.

Fig. 8. Profiles of the images reconstructed by use of the WISE method 
from the noise-free non-attenuated data after different numbers of itera-
tions.

Fig. 9. Plots of the root mean square errors (RMSEs) of the images reconstructed from the noise-free data versus (a) the number of iterations and 
(b) the number of wave equation solver runs. (c) Plots of the cost function value versus the number of iterations.
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ing acoustic attenuation in the imaging model, at least to 
a certain level with regard to feature detection tasks.

E. Images Reconstructed From Idealized Incomplete Data

The wavefront of the noise- and attenuation-free pres-
sure wavefield when the object is absent [Fig. 14(a)] ap-

pears to be very similar to that when the object is present 
[Fig. 4(a)]. As expected, the largest differences are seen in 
the signals received by the transducers located opposite 
of the emitter, as shown in Fig. 14(b). As seen in Fig. 
14(c), the time traces received by the 40th transducer are 
nearly identical when object is present and absent. This 
is because the back-scattered wavefield is weak for breast 
imaging applications. These results establish the potential 
efficacy of the data completion strategy of filling the miss-
ing data with the pressure data corresponding to a water 
bath.

The image reconstructed from the measurements com-
pleted with pressure data corresponding to a water bath 
is shown in Fig. 15(a). As revealed by the profile in Fig. 
15(c), this image is highly accurate. Alternatively, the 
image reconstructed from the data completed with zeros 
contains strong artifacts as shown in Fig. 15(b). These 
results suggest that the WISE method can be adapted to 
reconstruct images from incomplete data, which is par-
ticularly useful for emerging laser-induced USCT imaging 
systems [13]–[15].

VI. Experimental Validation

A. Data Acquisition

Experimental data recorded by use of the SoftVue 
USCT scanner [57] were utilized to further validate the 
WISE method. The scanner contained a ring-shaped array 
of radius 110  mm that was populated with 2048 trans-
ducer elements. Each element had a center frequency of 
2.75  MHz, a pitch of 0.34 mm, and was elevationally fo-
cused to isolate a 3-mm-thick slice of the to-be-imaged 
object. The transducer array was mounted in a water tank 
and could be translated with a motorized gantry in the 
vertical direction. See [57] for additional details regarding 
the system.

The breast phantom was built by Dr. Ernie Madsen 
from the University of Wisconsin and provides tissue-

Fig. 10. Images reconstructed from non-attenuated data contaminated 
with Gaussian random noise. Images (a) to (c) were reconstructed by use 
of the WISE method with a quadratic penalty with βQ = 1.0 × 10−3, 
1.0 × 10−2, and 1.0 × 10−1, respectively. Image (d) was reconstructed by 
use of the WISE method with a TV penalty with βTV = 5.0 × 10−4. The 
insert in the up right corner of each image is the zoomed-in image of the 
dashed black box, which contains 35 × 35 pixels (17.5 × 17.5  mm2). The 
grayscale window is [1.46, 1.58]  mm/µs.

Fig. 11. Plots of the root-mean-square errors (RMSEs) of the images reconstructed from the noisy data versus (a) the number of iterations and (b) 
the number of wave equation solver runs. (c) Plots of the cost function value versus the number of iterations. Both the WISE and the sequential 
waveform inversion methods employed a TV penalty with βTV = 5.0 × 10−4.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on August 13,2021 at 13:57:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 3, March 2015486

equivalent characteristics of highly scattering, predomi-
nantly parenchymal breast tissue. The phantom mimics 
the presence of benign and cancerous masses embedded in 
glandular tissue, including a subcutaneous fat layer. Fig. 
16 displays a schematic of one slice through the phantom. 
The diameter of the inclusions is approximately 12  mm. 
Table II presents the known acoustic properties of the 
phantom.

During data acquisition, the breast phantom was 
placed near the center of the ring-shaped transducer ar-
ray so that the distance between the phantom and each 
transducer was approximately the same. While scanning 
each slice, every other transducer element sequentially 
emits fan beam ultrasound signals toward the opposite 
side of the ring. The forward-scattered and back-scattered 
ultrasound signals are subsequently recorded by the same 
transducer elements. The received waveform was sampled 
at a rate of 12 MHz. The 1024  data acquisitions required 
approximately 20  s in total. A calibration data set was 
also acquired in which the phantom object was absent.

Fig. 12. (a) Computer-simulated noise-free attenuated pressure of the 
zeroth data acquisition. (b) The difference between the attenuated pres-
sure data and the non-attenuated pressure data. (c) The temporal pro-
files and (d) the amplitude spectra of the pressure received by the 128th 
transducer. The grayscale window for (a) and (b) is [−45, 0]  dB.

Fig. 13. (a) Image reconstructed by use of the WISE method from the noise-free attenuated data. (b) Image reconstructed by use of the WISE 
method with a TV penalty with βTV = 5.0 × 10−4, from the noisy attenuated data. The grayscale window is [1.46, 1.58] mm/µs. (c) Profiles at y 
= 6.5  mm of the reconstructed images.

Fig. 14. (a) Computer-simulated noise-free non-attenuated pressure data when the object is absent. (b) The difference between the pressure data 
when object is present and the pressure data when the object is absent. (c) Profiles of the pressure received by the 40th transducer. The grayscale 
window for (a) and (b) is [−45, 0]  dB.
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B. Data Pre-Processing

Forty-eight bad channels were manually identified by 
visual inspection. After discarding these, the data set con-
tained M = 976 acquisitions. Each acquisition contained 
Nrec = 976 time traces. Each time trace contained L = 
2112 time samples. The 976 good channels were indexed 
from 0 to 975. The corresponding data acquisitions were 
indexed in the same way. A Hann-window low-pass filter 
with a cutoff frequency of 4  MHz was applied to every 
time trace in both the calibration and the measurement 
data. This data filtering was implemented to mitigate nu-
merical errors that could be introduced by our second-
order wave equation solver.

C. Estimation of Excitation Pulse

The shape of the excitation pulse was estimated as the 
time trace of the calibration data (after pre-processing) 
received by the 488th receiver at the zeroth data acquisi-
tion. Note that the 488th receiver was approximated lo-
cated on the axis of the zeroth emitter, thus the received 
pulse was minimally affected by the finite aperture size 

effect of the transducers. Because our calibration data and 
measurement data were acquired using different electronic 
amplifier gains, the amplitude of the excitation pulse was 
estimated from the measurement data. More specifically, 
we simulated the zeroth data acquisition using the sec-
ond-order pseudospectral k-space method and compared 
the simulated time trace received by the 300th receiver 
with the corresponding measured time trace (after pre-
processing). The ratio between the maximum values of 
these two traces was used to scale the excitation pulse 
shape. We selected the 300th receiver because it resided 
out of the fan region indicated in Fig. 1; its received sig-
nals were unlikely to be strongly affected by the presence 
of the object. The estimated excitation pulse and its am-
plitude spectrum are displayed in Fig. 17. Note that the 
experimental excitation pulse contained higher frequency 
components than did the computer-simulated excitation 
pulse shown in Fig. 3.

D. Synthesis of Combined Data

As discussed in Section IV-C-4, signals received by re-
ceivers located near the emitter can be unreliable [23]. 
Our experimental data, as shown in Fig. 18(a), contained 
noise-like measurements for the receivers indexed from 0 
to 200, and from 955 to 975, in the case where the zeroth 
transducer functioned as the emitter. Also, our point-like 
transducer assumption introduces larger model mismatch-

Fig. 15. Images reconstructed by use of the WISE method from noise-free combined data that are completed (a) with computer-simulated pressure 
corresponding to a homogeneous medium and (b) with zeros. The grayscale window is [1.46, 1.58]  mm/µs. (c) Profiles at y = 6.5  mm of the images 
reconstructed by use of the WISE method from the two combined data sets.

Fig. 16. Schematic of the breast phantom employed in the experimental 
study.

TABLE II. Parameters of the Experimental Breast Phantom. 

Material
Sound speed 
(mm∙µs−1)

Attenuation 
coefficient at 2.5   
MHz (dB/cm)

Fat 1.467 0.48
Parenchymal tissue 1.552 0.89
Cancer 1.563 1.20
Fibroadenoma 1.552 0.52
Gelatin cyst 1.585 0.16
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es for the receivers located near the emitter. As shown 
in Figs. 18(c) and (d), even though the simulated time 
trace received by the 300th receiver matches accurately 
with the experimentally measured one, the simulated time 
trace received by the 200th receiver is substantially differ-
ent compared with the experimentally measured one. To 
minimize the effects of model mismatch, we replaced these 
unreliable measurements with computer-simulated water 
bath data, as described in Section IV-C. We designated 
the time traces received by the 512 receivers located on 
the opposite side of the emitter as the reliable measure-
ments for each data acquisition. The zeroth data acquisi-
tion of the combined data is displayed in Fig. 18(b).

E. Estimation of Initial Guess

The initial guess for the WISE method was obtained 
by use of the bent-ray reconstruction method described in 
Appendix C. We first filtered each time trace of the raw 
data by a band-pass Butterworth filter (0.5–2.5  MHz). 

Subsequently, we extracted the TOF by use of the thresh-
olding method with a thresholding value of 20% of the 
peak value of each time trace. The bent-ray reconstruction 
algorithm was applied for image reconstruction with a 
measured background sound speed of 1.513  mm/µs. The 
resulting image is shown in Fig. 19(a) and has a pixel size 
of 1  mm. Finally, the image was smoothed by convolving 
it with a 2-D Gaussian kernel with a standard deviation 
of 2  mm.

F. Image Reconstruction

We applied the WISE method with a TV penalty to the 
combined data set. The second-order wave equation solver 
was employed with a calculation domain of dimensions 
512.0 × 512.0  mm2. The calculation domain was sampled 
on a 2560 × 2560 Cartesian grid with a grid spacing of 
0.2  mm. On a platform consisting of dual quad-core CPUs 
with a 3.30  GHz clock speed, 64  GB RAM, and a single 
NVIDIA Tesla K20 GPU, each numerical solver run took 
40  s to calculate the pressure data for 2112 time samples. 
Knowing the size of the phantom, we set the reconstruc-
tion region to be within a circle of diameter 128  mm (i.e., 
only the sound speed values of pixels within the circle 
were updated during the iterative image reconstruction). 
We swept the value of βTV over a wide range to investigate 
its impact on the reconstructed images.

G. Images Reconstructed From Experimental Data

As shown in Fig. 19, the spatial resolution of the image 
reconstructed by use of the WISE method with a TV pen-
alty is significantly higher than that reconstructed by use 
of the bent-ray model-based method. In particular, the 
structures labeled A and B possess clearly defined bound-
aries. This observation is further confirmed by the profiles 
of the two images shown in Fig. 20. In addition, the struc-
ture labeled C in Fig. 19(b) is almost indistinguishable 
in the image reconstructed by use of the bent-ray model-
based method [Fig. 19(a)]. The improved spatial resolu-

Fig. 17. (a) Normalized temporal profile and (b) amplitude spectrum of 
the excitation pulse employed in the experimental studies. The dashed 
line in (b) marks the center frequency of excitation pulse at 2.09  MHz.

Fig. 18. Zeroth acquisition of (a) the experimentally measured raw data 
and (b) the combined data, and time traces at the zeroth acquisition 
received by (c) the 300th receiver, and (d) the 200th receiver. The gray-
scale window for (a) and (b) is [−45, 0]  dB.

Fig. 19. Images reconstructed from the experimentally measured phan-
tom data by use of (a) the bent-ray model-based sound speed recon-
struction method and (b) the WISE method with a TV penalty (βTV 
= 1.0 × 102) after the 200th iteration. The grayscale window is [1.49, 
1.57]  mm/µs.
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tion is expected because the WISE method takes into ac-
count high-order acoustic diffraction, which is ignored by 
the bent-ray method [23]. Though not shown here, for the 
bent-ray method, we investigated multiple TOF pickers 
[25] and systematically tuned the regularization parame-
ter. As such, it is likely that Fig. 19(a) represents a nearly 
optimal bent-ray image in terms of the resolution. This 
resolution also appears to be similar to previous experi-
mental results reported in the literature [26].

The convergence properties of the WISE method with 
a TV penalty with experimental data were consistent with 
those observed in the computer simulation studies. Images 
reconstructed by use of 10, 50, and 300 algorithm itera-
tions are displayed in Fig. 21. The image reconstructed by 
use of 10 iterations contains radial streak artifacts that 
are similar in nature to those observed in the computer 
simulation studies. These artifacts were mitigated after 
more iterations. The image reconstructed after 300 itera-
tions [Fig. 21(d)] appears to be similar to that after 200 
iterations [Fig. 19(b)], suggesting that the WISE method 
with a TV penalty is close to convergence after about 200 
iterations. The time required to complete 200 iterations 
was approximately 14  hours. The estimated time it would 
take for the sequential waveform inversion method to pro-
duce a comparable image is approximately 1  month, as-
suming the same number of iterations is required as in the 
computer simulation studies (i.e., 40).

Despite the nonlinearity of the WISE method, the im-
pact of the TV penalty appears to be similar to that ob-
served in other imaging applications [54], [58] (Fig. 22). 
Though not shown here, the impact of the quadratic 
penalty is also similar. As expected, a larger value of β 
reduced the noise level at the expense of spatial image 
resolution. These results suggest a predictable impact of 
the penalties on the images reconstructed by use of the 
WISE method.

VII. Summary

It is known that waveform inversion-based reconstruc-
tion methods can produce sound speed images that pos-
sess improved spatial resolution properties over those 
produced by ray-based methods. However, waveform in-
version methods are computationally demanding and have 
not been applied widely in USCT breast imaging. In this 
work, based on the time-domain wave equation and mo-
tivated by recent mathematical results in the geophys-
ics literature, the WISE method was developed that cir-
cumvents the large computational burden of conventional 
waveform inversion methods. This method encodes the 
measurement data using a random encoding vector and 
determines an estimate of the sound speed distribution 
by solving a stochastic optimization problem by use of 
a stochastic gradient descent algorithm. With our cur-
rent GPU-based implementation, the computation time 
was reduced from weeks to hours. The WISE method was 
systematically investigated in computer simulation and 

experimental studies involving a breast phantom. The 
results suggest that the method holds value for USCT 
breast imaging applications in a practical setting.

Many opportunities remain to further improve the per-
formance of the WISE method. As shown in Fig. 19, im-
ages reconstructed by use of the WISE method can con-
tain certain artifacts that are not present in the image 
reconstructed by use of the bent-ray method. An example 
of such an artifact is the dark horizontal streak below 
the structure C. Because of the nonlinearity of the im-
age reconstruction problem, it is challenging to determine 
whether these artifacts are caused by imaging model er-
rors or by the optimization algorithm, which might have 
arrived at a local minimum of the cost function. A more 
accurate imaging model can be developed to account for 
out-of-plane scattering, the transducer finite aperture size 
effect, acoustic absorption, as well as other physical fac-
tors. Also, the stochastic gradient descent algorithm is 
one of the most basic stochastic optimization algorithms. 
Numerous emerging optimization algorithms can be em-
ployed [33], [42] to improve the convergence rate. In ad-

Fig. 20. Profiles at (a) x = −24.0  mm and (b) x = 10.0  mm of the recon-
structed images by use of the bent-ray model-based sound speed recon-
struction method (light solid) and the WISE method with a TV penalty 
with βTV = 1.0 × 102 (dark dashed) from experimentally measured data.
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dition, there remains a great need to compare the WISE 
method with other existing sound speed reconstruction 
algorithms [19], [40].

There remains a need to conduct additional investiga-
tions of the numerical properties of the WISE method. 
Currently, a systematic comparison of the statistical prop-
erties of the WISE and the sequential waveform inversion 
method is prohibited by the excessively long computa-
tion times required by the latter method. This comparison 

will be interesting when a more efficient wave equation 
solver is available. Given the fact that waveform inver-
sion is nonlinear and sensitive to the initial guess, it be-
comes important to investigate how to obtain an accurate 
initial guess. We also observed that the performance of 
the WISE method is sensitive to how strong the medium 
heterogeneities are and the profile of the excitation pulse. 
An investigation of the impact of the excitation pulse the 
numerical properties of the image reconstruction may help 
optimize hardware design. In addition, quantifying the 
statistics of the reconstructed images will allow applica-
tion of task-based measures of image quality to be applied 
to guide system optimization studies.

Appendix A 
Continuous-to-Discrete USCT Imaging Model

In practice, each data function gm(r,t) is spatially and 
temporally sampled to form a data vector gm N L∈ R rec

, 
where Nrec and L denote the number of receivers and the 
number of time samples, respectively. We will assume that 
Nrec and L do not vary with excitation pulse. Let [ ]gm n L lrec +  
denotes the (nrecL + l)th element of gm. When the receiv-
ers are point-like, gm is defined as

	 [ ] = ( ( , ), ),g rm n L l mg m n lrec
rec t

+ ∆ 	 (30)

where the indices nrec and l specify the receiver location 
and temporal sample, respectively, and Δt is the temporal 
sampling interval. The vector r(m, nrec) ∈ Ωm denotes the 
location of the nrecth receiver at the mth data acquisition.

A C-D imaging model for USCT describes the mapping 
of c(r) to the data vector gm and can be expressed as

	

[ ] = ( , ) |

= 0,1, ,

= ( , ), =g r r rm L l m m n t ln ms t

n N

rec rec t
c

rec re
for

+ M H ∆

� cc −
−

1
= 0,1, , 1l L� .

	 (31)

Note that the acousto-electrical impulse response [59] of 
the receivers can be incorporated into the C-D imaging 
model by temporally convolving sm(r,t) in (1) with the 
receivers’ acousto-electrical impulse response if we assume 
all receiving transducers share an identical acousto-electri-
cal impulse response.

Appendix B 
Fréchet Derivative of Data Fidelity Term

Consider the integrated squared-error data misfit func-
tion [22], [23],

	 F CC( ) =
1
2 [ ( , ) ( , )] ,

=0

1

0

2c d dt g t g t
m

M T
m m

m

−

∑∫ ∫ −
Ω
r r r 	 (32)

Fig. 21. (a) The initial guess of the sound speed map and the images 
reconstructed by use of the WISE method with a TV penalty with (βTV 
= 1.0 × 102) after (b) the 10th, (b) the 50th, and (d) the 300th iteration, 
from the experimentally measured phantom data. The grayscale window 
is [1.49, 1.57]  mm/µs.

Fig. 22. Images reconstructed by use of the WISE method with a TV 
penalty with (a) βTV = 5.0 × 101, and (b) βTV = 5.0 × 102, from the 
experimentally measured phantom data. The grayscale window is [1.49, 
1.57]  mm/µs.
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where g tm( , )r  and gm(r,t) denote the measured data func-
tion and the predicted data function computed by use of 
(3) with the current estimate of c(r).

Both the sequential and WISE reconstruction method 
described in Section III require knowledge of the Fréchet 
derivatives of F CC( )c  and RCC( )c  with respect to c, de-
noted by ∇c

CCF  and ∇c
CCR , respectively. The calcula-

tion of ∇c
CCR  can be readily accomplished for quadratic 

smoothness penalties [54], [60]. For the integrated squared 
error data misfit function given in (32), ∇c

CCF  can be 
computed via an adjoint state method as [28], [61], [62]

	 ∇ −
∂
∂

−

∑∫c
CCF =

1
( )

( , ) ( , ),3
=0

1

0

2

2c
dtq T t

t
p t

m

M T
m mr
r r 	 (33)

where q tm( , ) ( [0, ))2 3r ∈ × ∞L R  is the solution to the ad-
joint wave equation. The adjoint wave equation is defined 
as

	 ∇ −
∂
∂

−2
2

2

2( , )
1
( )

( , ) = ( , ),q t
c t

q t tm m mr
r

r rτ 	 (34)

where τm m mt g T t g T t( , ) = ( , ) ( , )r r r− − − . The adjoint 
wave equation is nearly identical in form to the wave equa-
tion in (1) except for the different source term on the 
right-hand side, suggesting the same numerical approach 
can be employed to solve both equations. Because one 
needs to solve (1) and (34) M times to calculate ∇c

CCF , it 
is generally true that the sequential waveform inversion is 
computationally demanding even for a 2-D geometry [63].

Appendix C 
Bent-Ray Model-Based Sound Speed 

Reconstruction

We developed an iterative image reconstruction algo-
rithm based on a bent-ray imaging model. The bent-ray 
imaging model assumes that an acoustic pulse travels 
along a ray path that connects the emitter and the re-
ceiver and accounts for the refraction of rays, also known 
as ray-bending, through an acoustically inhomogeneous 
medium. For each pair of receiver and emitter, the travel 
time, as well as the ray path, is determined by the me-
dium’s sound speed distribution. Given the travel times 
for a collection of emitter and receiver pairs distributed 
around the object, the medium sound speed distribution 
can be iteratively reconstructed. This bent-ray model-
based sound speed reconstruction (BRSR) method has 
been employed in the USCT literature [26], [64], [65].

To perform the BRSR, we extracted a TOF data vector 
from the measured pressure data. Denoting the TOF data 
vector by T ∈ RMNrec

, each element of T represented the 
TOF from each emitter and receiver pair. The extraction 
of the TOF was conducted in two steps. First, we esti-
mated the difference between the TOF when the object 

was present and the TOF when the object was absent by 
use of a thresholding method [25], [66]. In particular, 20% 
of the peak value of each time trace was employed as the 
thresholding value. Second, a TOF offset was added to the 
estimated difference TOF for each emitter and receiver 
pair to obtain the absolute TOF, where the TOF offset 
was calculated according to the scanning geometry and 
the known background SOS.

Having the TOF vector T, we reconstructed the sound 
speed by solving the following optimization problem:

	 s T K s s
s

= ( ),
2

arg min − +s βR 	 (35)

where s denotes the slowness (the reciprocal of the SOS) 
vector, and Ks denotes the system matrix that maps the 
slowness distribution to the TOF data. The superscript s 
indicates the dependence of Ks on the slowness map. At 
each iteration, using the current estimate of the SOS, a 
ray-tracing method [50] was employed to construct the 
system matrix Ks. Explicitly storing the system matrix in 
a sparse representation, we utilized the limited BFGS 
method [51] to solve the optimization problem given in 
(35). The estimated slowness was then converted to the 
sound speed by taking the reciprocal of the ̂s element. We 
refer the readers to [26], [64]–[67] for more details about 
the BRSR method.
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